
Arexx

Arexx ii

COLLABORATORS

TITLE :

Arexx

ACTION NAME DATE SIGNATURE

WRITTEN BY March 2, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Arexx iii

Contents

1 Arexx 1

1.1 Arexx Documents . 1

1.2 introduction . 2

1.3 chapter1 . 2

1.4 chapter2 . 2

1.5 chapter3 . 2

1.6 chapter4 . 4

1.7 chapter5 . 5

1.8 chapter6 . 6

1.9 chapter7 . 9

1.10 chapter8 . 10

1.11 chapter9 . 10

1.12 chapter10 . 11

1.13 appendixa . 13

1.14 appendixb . 15

1.15 appendixc . 15

1.16 appendixd . 15

1.17 appendixe . 16

1.18 organization of this document . 17

1.19 using this manual . 18

1.20 typographic conventions . 18

1.21 future directions . 18

1.22 language features . 19

1.23 arexx on the amiga . 20

1.24 further information . 20

1.25 installing arexx . 20

1.26 arexx and workbench . 20

1.27 installation . 21

1.28 starting the resident process . 21

1.29 naming conventions . 22

Arexx iv

1.30 the rexx directory . 22

1.31 program examples . 22

1.32 format . 25

1.33 tokens . 25

1.34 comment tokens . 25

1.35 symbol tokens . 25

1.36 string tokens . 26

1.37 operators . 26

1.38 special character tokens . 27

1.39 clauses . 28

1.40 null clauses . 28

1.41 label clauses . 28

1.42 assignment clauses . 28

1.43 instruction clauses . 29

1.44 command clauses . 29

1.45 clause classification . 29

1.46 expressions . 30

1.47 symbol resolution . 30

1.48 order of evaluation . 30

1.49 numbers and numeric precision . 31

1.50 boolean values . 31

1.51 numeric precision . 31

1.52 unnamed.1 . 32

1.53 arithmetic operators . 32

1.54 concatenation operators . 34

1.55 comparison operators . 34

1.56 logical (boolean) operators . 35

1.57 stems and compound symbols . 35

1.58 the execution environment . 35

1.59 the external environment . 36

1.60 the internal environment . 36

1.61 input and output . 37

1.62 resource tracking . 37

1.63 address . 38

1.64 arg . 38

1.65 break . 39

1.66 call . 39

1.67 do . 39

1.68 drop . 40

Arexx v

1.69 echo . 41

1.70 else . 41

1.71 end . 41

1.72 exit . 42

1.73 if . 42

1.74 interpret . 42

1.75 iterate . 43

1.76 leave . 43

1.77 nop . 44

1.78 numeric . 44

1.79 options . 44

1.80 otherwise . 45

1.81 parse . 45

1.82 procedure . 47

1.83 pull . 48

1.84 push . 48

1.85 queue . 49

1.86 return . 50

1.87 say . 50

1.88 select . 50

1.89 shell . 51

1.90 signal . 51

1.91 then . 52

1.92 trace . 52

1.93 upper . 53

1.94 when . 53

1.95 unnamed.2 . 53

1.96 the host address . 54

1.97 the command interface . 54

1.98 using commands in macro programs . 55

1.99 using arexx with command shells . 55

1.100command inhibition . 56

1.101concept . 56

1.102syntax and search order . 57

1.103search order . 57

1.104internal functions . 58

1.105built-in functions . 58

1.106external function libraries . 59

1.107function hosts . 59

Arexx vi

1.108the built-in function library . 60

1.109abbrev() . 61

1.110abs() . 61

1.111addlib() . 61

1.112address() . 61

1.113arg() . 62

1.114b2c() . 62

1.115bitand() . 62

1.116bitchg() . 63

1.117bitclr() . 63

1.118bitcomp() . 63

1.119bitor() . 63

1.120bitset() . 63

1.121bittst() . 64

1.122bitxor() . 64

1.123c2b() . 64

1.124c2d() . 64

1.125c2x() . 64

1.126center() or centre() . 65

1.127close() . 65

1.128compress() . 65

1.129compare() . 65

1.130copies() . 66

1.131d2c() . 66

1.132d2x() . 66

1.133datatype() . 66

1.134delstr() . 67

1.135delword() . 67

1.136eof() . 67

1.137errortext() . 67

1.138exists() . 67

1.139export() . 68

1.140freespace() . 68

1.141getclip() . 68

1.142getspace() . 69

1.143hash() . 69

1.144import() . 69

1.145index() . 69

1.146insert() . 70

Arexx vii

1.147lastpos() . 70

1.148left() . 70

1.149length() . 70

1.150max() . 70

1.151min() . 71

1.152open() . 71

1.153overlay() . 71

1.154pos() . 71

1.155pragma() . 72

1.156random() . 72

1.157randu() . 73

1.158readch() . 73

1.159readln() . 73

1.160remlib() . 73

1.161reverse() . 74

1.162right() . 74

1.163seek() . 74

1.164setclip() . 74

1.165show() . 75

1.166sign() . 75

1.167space() . 75

1.168storage() . 75

1.169strip() . 76

1.170substr() . 76

1.171subword() . 76

1.172symbol() . 77

1.173time() . 77

1.174trace() . 77

1.175translate() . 78

1.176trim() . 78

1.177upper() . 78

1.178value() . 78

1.179verify() . 78

1.180word() . 79

1.181wordindex() . 79

1.182wordlength() . 79

1.183words() . 79

1.184writech() . 79

1.185writeln() . 80

Arexx viii

1.186x2c() . 80

1.187xrange() . 80

1.188tracing options . 80

1.189display formatting . 81

1.190tracing output . 81

1.191command inhibition2 . 82

1.192interactive tracing . 82

1.193error processing . 83

1.194the external tracing flag . 83

1.195interrupts . 84

1.196template structure . 85

1.197template objects . 86

1.198the scanning process . 86

1.199templates in action . 87

1.200parsing by tokenization . 87

1.201pattern parsing . 88

1.202positional markers . 88

1.203multiple templates . 88

1.204ch9 concept . 89

1.205command utilities . 90

1.206hi . 90

1.207rx . 90

1.208rxset . 90

1.209rxc . 91

1.210tcc . 91

1.211tco . 91

1.212te . 91

1.213ts . 91

1.214resource management . 91

1.215the global tracing console . 92

1.216the library list . 92

1.217the clip list . 93

1.218basic structures . 94

1.219designing a command interface . 95

1.220receiving command messages . 96

1.221result fields . 96

1.222multiple host processes . 97

1.223invoking arexx programs . 97

1.224message packets . 97

Arexx ix

1.225command invocations . 98

1.226function invocations . 99

1.227 search order . 100

1.228extension fields . 100

1.229interpreting the result fields . 101

1.230communicating with the resident process . 102

1.231command(action)codes . 102

1.232modifier flags . 103

1.233unnamed.3 . 104

1.234unnamed.4 . 104

1.235design considerations . 105

1.236calling convention . 105

1.237parameter conversion . 106

1.238returned values . 106

1.239direct manipulation of data structures . 106

1.240error1 . 107

1.241error2 . 107

1.242error3 . 107

1.243error4 . 107

1.244error5 . 108

1.245error6 . 108

1.246error7 . 108

1.247error8 . 108

1.248error9 . 108

1.249error10 . 108

1.250error11 . 109

1.251error12 . 109

1.252error13 . 109

1.253error14 . 109

1.254error15 . 109

1.255error16 . 109

1.256error17 . 110

1.257error18 . 110

1.258error19 . 110

1.259error20 . 110

1.260error21 . 110

1.261error22 . 110

1.262error23 . 111

1.263error24 . 111

Arexx x

1.264error25 . 111

1.265error26 . 111

1.266error27 . 111

1.267error28 . 111

1.268error29 . 112

1.269error30 . 112

1.270error31 . 112

1.271error32 . 112

1.272error33 . 112

1.273error34 . 112

1.274error35 . 113

1.275error36 . 113

1.276error37 . 113

1.277error38 . 113

1.278error39 . 113

1.279error40 . 113

1.280error41 . 113

1.281error42 . 114

1.282error43 . 114

1.283error44 . 114

1.284error45 . 114

1.285error46 . 114

1.286error47 . 115

1.287error48 . 115

1.288limits . 115

1.289compatibility . 115

1.290functional groups . 116

1.291library functions . 117

1.292addclipnode . 120

1.293addrsrcnode . 120

1.294clearmem . 120

1.295clearrexxmsg . 121

1.296closef . 121

1.297closepublicport . 121

1.298cmpstring . 121

1.299createargstring . 122

1.300createdospkt . 122

1.301createrexxmsg . 122

1.302cva2i . 123

Arexx xi

1.303cvc2x . 123

1.304cvi2arg . 123

1.305cvi2az . 124

1.306cvs2i . 124

1.307cvx2c . 124

1.308currentenv . 124

1.309deleteargstring . 125

1.310deletedospkt . 125

1.311deleterexxmsg . 125

1.312dosread . 125

1.313doswrite . 126

1.314errormsg . 126

1.315existf . 126

1.316fillrexxmsg . 126

1.317finddevice . 127

1.318findrsrcnode . 127

1.319freeport . 127

1.320freespace . 128

1.321getspace . 128

1.322initlist . 128

1.323initport . 128

1.324isrexxmsg . 129

1.325issymbol . 129

1.326listnames . 129

1.327lockrexxbase . 130

1.328openf . 130

1.329openpublicport . 131

1.330queuef . 131

1.331readf . 131

1.332readstr . 131

1.333remclipnode . 132

1.334remrsrclist . 132

1.335remrsrcnode . 132

1.336seekf . 133

1.337stackf . 133

1.338stctoken . 133

1.339strcpya . 134

1.340strcpyn . 134

1.341strcpyu . 134

Arexx xii

1.342strflipn . 135

1.343strlen . 135

1.344strcmpn . 135

1.345toupper . 135

1.346unlockrexxbase . 135

1.347writef . 136

1.348allocmem() . 136

1.349closeport() . 136

1.350freemem() . 137

1.351getarg() . 137

1.352getpkt() . 137

1.353openport() . 138

1.354reply() . 138

1.355showdir() . 138

1.356showlist() . 138

1.357statef() . 139

1.358waitpkt() . 139

1.359directories . 139

1.360thec directory . 140

1.361theinclude directory . 140

1.362thelibs directory . 140

1.363therexx directory . 140

1.364thetools directory . 141

1.365miscellaneous files . 141

1.366listings of header files . 141

1.367storage.h . 141

1.368rxslib.h . 145

1.369rexxio.h . 147

1.370errors.h . 148

1.371glossary . 150

Arexx 1 / 152

Chapter 1

Arexx

1.1 Arexx Documents

AREXX
TABLE OF CONTENTS

AREXX USER’S REFERENCE MANUAL
AmigaGuide Rexx Documentation By Kenny G 15.9.93

INTRODUCTION

CHAPTER 1. WHAT IS AREXX?

CHAPTER 2. GETTING ACQUAINTED

CHAPTER 3. ELEMENTS OF THE LANGUAGE

CHAPTER 4. INSTRUCTIONS

CHAPTER 5. COMMANDS

CHAPTER 6. FUNCTIONS

CHAPTER 7. TRACING AND INTERRUPTS

CHAPTER 8. PARSING AND TEMPLATES

CHAPTER 9. THE RESIDENT PROCESS

CHAPTER 10. INTERFACING TO AREXX

APPENDIX A. ERROR MESSAGES

APPENDIX B. LIMITS AND COMPATIBILITY

APPENDIX C. THE AREXX SYSTEMS LIBRARY

APPENDIX D. THE AREXX SUPPORT LIBRARY

APPENDIX E. DISTRIBUTION FILES

Arexx 2 / 152

1.2 introduction

Welcome to ARexx,an implementation of the REXX language ←↩
for the Amiga

computer. ARexx is a powerful programming tool, but one which by virtue of
its clean syntax and sparse vocabulary is also easy to learn and easy to use.

Organization of this Document

Using this Manual

Typographic Conventions

Future Directions

1.3 chapter1

Language Features

ARexx on the Amiga

Further Information

1.4 chapter2

This chapter explains how to install ARexx on your Amiga ←↩
computer and shows

some example programs.

Installing ARexx

ARexx and Workbench

Installation

Starting the Resident Process

Naming Conventions

The REXX: Directory

Program Examples

1.5 chapter3

Arexx 3 / 152

This chapter introduces the rules and concepts that make ←↩
up the REXX

language. The intent is not to present a formalized definition,but rather to
convey a practical understanding of how the language elements "fit together"
to form programs.

Format

Numbers and Numeric Precision

Tokens

Boolean Values

Comment Tokens

Numeric Precision

Symbol Tokens

Operators

String Tokens

Arithmetic Operators

Operators

Concatenation Operators

Special Character Tokens

Comparison Operators

Clauses

Logical (Boolean) Operators

Null Clauses

Stems and Compound Symbols

Label Clauses

The Execution Environment

Assignment Clauses

The External Environment

Instruction Clauses

The Internal Environment

Command Clauses

Arexx 4 / 152

Input and Output

Clause Classification

Resource Tracking

Expressions

Symbol Resolution

Order of Evaluation

1.6 chapter4

Instruction clauses are identified by an initial keyword symbol ←↩
that is not

followed by a colon(:)or an equals(=)operator. Each instruction signifies a
specific action,and may be followed by one or more subkeywords,expressions,or
other instruction-specific information. Instruction keywords and subkeywords
are recognized only in this specific context,and are therefore not "reserved
words" in the usual sense of the term. Keywords may be used freely as
variables or function names,although such usage may become confusing at times

In the descriptions that follow,keywords are shown in uppercase and optional
parts of the instruction are enclosed in brackets. Alternative selections
are separated by a vertical bar(|),and required alternative are enclosed in
braces ({}).

ADDRESS

ELSE

NOP

PUSH

THEN

ARG

END

NUMERIC

QUEUE

TRACE

BREAK

EXIT

OPTIONS

Arexx 5 / 152

RETURN

UPPER

CALL

IF

OTHERWISE

SAY

WHEN

DO

INTERPRET

PARSE

SELECT

DROP

ITERATE

PROCEDURE

SHELL

ECHO

LEAVE

PULL

SIGNAL

1.7 chapter5

The REXX language is unusual in that an entire syntactic class of ←↩
program

statements are reserved for cmmands,statements that have meaning not within the
language itself but rather to an external program. When a command clause
is found in a program,it is evaluated as an expression and then sent through
the command interface to an explicit or implicit host application,an external
program that has announced its ability to receive commands. The host
application then processes the command and returns a result code that
indicates whether the command was performed successfully. In this manner
every host program becomes fully programmable,and with even a limited set of
predefined operations can be customized by the end user.
This chapter discusses the ARexx command interface and examines some of the
ways in which commands can be used to build programs for an external program.
Such programs are ofter called "macro programs" because they implement a

Arexx 6 / 152

complex ("macro") action from a series of simpler "micro" commands.

Chapter 10 has detailed information on the data structers required to
implement a command interface for an applications program.

Command Clauses

The Host Address

The Command Interface

Using Commands in Macro Programs

Using ARexx with Command Shells

Command Inhibition

1.8 chapter6

Concept

Syntax and Search Order

Search Order

Internal Functions

Built-In Functions

External Function Libraries

Function Hosts

The Built-In Function Library

ABBREV()

BITXOR()

EOF()

LENGTH()

RIGHT()

TRANSLATE()

ABS()

C2B()

ERRORTEXT()

Arexx 7 / 152

MAX()

SEEK()

TRIM()

ADDLIB()

C2D()

EXISTS()

MIN()

SETCLIP()

UPPER()

ADDRESS()

C2X()

EXPORT()

OPEN()

SHOW()

VALUE()

ARG()

CENTRE()

FREESPACE()

OVERLAY()

SIGN()

VERIFY()

B2C()

CLOSE()

GETCLIP()

POS()

SPACE()

WORD()

BITAND()

COMPRESS()

Arexx 8 / 152

GETSPACE()

PRAGMA()

STORAGE()

WORDINDEX()

BITCHG()

COMPARE()

HASH()

RANDOM()

STRIP()

WORDLENGTH()

BITCLR()

COPIES()

IMPORT()

RANDU()

SUBSTR()

WORDS()

BITCOMP()

D2C()

INDEX()

READCH()

SUBWORD()

WRITECH()

BITOR()

DATATYPE()

INSERT()

READLN()

SYMBOL()

WRITELN()

Arexx 9 / 152

BITSET()

DELSTR()

LASTPOS()

REMLIB()

TIME()

X2C()

BITTST()

DELWORD()

LEFT()

REVERSE()

TRACE()

XRANGE()
Undocumented :
D2X()

1.9 chapter7

ARexx provides tracing and source-level debugging facilities that ←↩
are unusual

in a high-level language. Tracing refers to the ability to display selected
statements in a program as the program executes. When a clause is traced,its
line number,source text,and related information are displayed on the console.
The tracing action of the interpreter is determined by a trace option that
selects which source clauses will be traced,and two modifier flags that
control command inhibition and interactive tracing.
The internal interrupt system enables an ARexx program to detect certain
synchronous or asynchronous events and to take special actions when they
occur. Events such as a syntax error or an external halt request that would
normally cause the program to exit can instead be trapped so that corrective
actions can be taken.

Tracing Options

Display Formatting

Tracing Output

Command Inhibition

Interactive Tracing

Error Processing

Arexx 10 / 152

The External Tracing Flag

Interrupts

1.10 chapter8

Parsing is a operation that extracts substrings from a string ←↩
and assigns

them to variables. It corresponds roughly to the notion of a "formatted
read" used in other languages,but has been generalized in the several ways.
Parsing is performed using the PARSE instruction or its variants ARG and
PULL. The input for the operation is called the parse string and can come
from several sources; these source options are described with the PARSE
instruction in Chapter 4.

Parsing is controlled by a template,a group of tokens that specifies both the
variables to be given values and the way to determine the value strings.
Templates were described briefly with the PARSE instruction;the present
chapter presents a more formal description of their structure and operation.

Template Structure

Template Objects

The Scanning Process

Templates in Action

Parsing by Tokenization

Pattern Parsing

Positional Markers

Multiple Templates

1.11 chapter9

Concept

Command Utilities

HI

RX

RXSET

RXC

Arexx 11 / 152

TCC

TCO

TE

TS

Resource Management

The Global Tracing Console

The Library List

The Clip List

1.12 chapter10

This chapter discusses the issues involved in designing and ←↩
implementing an

interface between ARexx and an external applications program. The material
presented here is directed to software developers,so a high degree of
familiarity with programming the Amiga in either "C" or assembly-language is
assumed.

ARexx can interact with external programs in several ways. The command
interface is used to communicate with an external program running as a
separate task in the Amiga’s multitasking environment. The interaction takes
place by passing messages between public message ports,and is in many ways
similar to the interaction of a program with Intution,the Amiga’s window and
menu manager. The command interface provides both a means of sharing data
and a method of controlling an applications program.

Function libraries provide a mechanism for calling external code as part of
an ARexx program’s tasks context. The linkages for such calls are
established dynamically at run time rather than when the program is linked,so
each function library must include an entry point to match function names
with the address of the function to be called.

Function hosts are external tasks that manage a public message port for
communicating with ARexx or other programs. Both function hosts and function
libraries are managed by the Library List,which provides a prioritized search
mechanism for resolving function names. Function hosts may be used as a
gateway into a metwork to provide a remote procedure call facility. ARexx
imposes no constraints on the internal operations of a function host,except
to require that message packets be returned with an appropriate code.

The resident process acts as the hub for communications between ARexx and
external entities. It opens and manages a public message port named "REXX,"
and provides a number of support services. Note that the resident process is
itself a "host application" whose function it is to launch ARexx programs and
maintain global resources. The activation structures for all ARexx programs
are linked into a list maintained by the resident process,and in principle
their compete internal states are accessible to external programs.

Arexx 12 / 152

The ARexx interpreter is structured as an Amiga shared library and includes
entry points specifically designed to help implement an interface to ARexx.
Functions are available to create and delete message packets,argument
strings,and other resources. Software developers are rged to use these
library routines whenever possible,as they provide "safe" access to the
internal structures. The ARexx Systems Library functions are documented in
Appendix C. The distribution disk contains the INCLUDE files required to
work with the library and data structures.

Basic Structers

Designing a Command Interface

Receiving Command Messages

Result Fields

Multiple Host Processes

Invoking ARexx Programs

Message Packets

Command Invocations

Function Invocations

Search Order

Extension Fields

Interpreting the Result Fields

Communicating with the Resident Process

Command (Action) Codes

Modifier Flags

Result Fields

External Function Libraries

Design Considerations

Calling Convention

Parameter Conversion

Returned Values

Direct Manipulation of Data Structures

Arexx 13 / 152

1.13 appendixa

When the ARexx interpeter detects an error in a program,it ←↩
returns an error

code to indicate the nature of the problem. Errors are normally handled by
displaying the error code,the source line number where the error occurred,and
a brief message explaining the error condition. Unless the SYNTAX interrupt
has been previously enabled(using the SIGNAL instruction),the program then
terminates and control returns to the caller. Most syntax and execution
errors can be trapped by the SYNTAX interrupt,allowing the user to retain
control and perform whatever special error processing is required. Certain
errors are generated outside of the context of an ARexx program,and therefore
cannot be trapped by this mechanism. Refer to chapter 7 for further
information on error trapping and processing.

Associated with each error code is a severity level that is reported to the
calling program as the primary result code. The error code itself is
returned as the secondary result. The subsequent propagation or reporting of
these codes is of course dependent on the external(calling)program.

The following pages list all of the currently-defined error codes, along with
the associated severity level and message string.

ERROR: 1 SEVERITY: 5 MESSAGE: PROGRAM NOT FOUND

ERROR: 2 SEVERITY: 10 MESSAGE: EXECUTION HALTED

ERROR: 3 SEVERITY: 20 MESSAGE: INSUFFICIENT MEMORY

ERROR: 4 SEVERITY: 10 MESSAGE: INVALID CHARACTER

ERROR: 5 SEVERITY: 10 MESSAGE: UNMATCHED QUOTE

ERROR: 6 SEVERITY: 10 MESSAGE: UNTERMINATED COMMENT

ERROR: 7 SEVERITY: 10 MESSAGE: CLAUSE TOO LONG

ERROR: 8 SEVERITY: 10 MESSAGE: INVALID TOKEN

ERROR: 9 SEVERITY: 10 MESSAGE: SYMBOL OR STRING TOO LONG

ERROR: 10 SEVERITY: 10 MESSAGE: INVALID MESSAGE PACKET

ERROR: 11 SEVERITY: 10 MESSAGE: COMMAND STRING ERROR

ERROR: 12 SEVERITY: 10 MESSAGE: ERROR RETURN FROM FUNCTION

ERROR: 13 SEVERITY: 10 MESSAGE: HOST ENVIRONMENT NOT FOUND

ERROR: 14 SEVERITY: 10 MESSAGE: REQUESTED LIBRARY NOT FOUND

ERROR: 15 SEVERITY: 10 MESSAGE: FUNCTION NOT FOUND

ERROR: 16 SEVERITY: 10 MESSAGE: FUNCTION DID NOT RETURN VALUE

Arexx 14 / 152

ERROR: 17 SEVERITY: 10 MESSAGE: WRONG NUMBER OF ARGUMENTS

ERROR: 18 SEVERITY: 10 MESSAGE: INVALID ARGUMENT TO FUNCTION

ERROR: 19 SEVERITY: 10 MESSAGE: INVALID PROCEDURE

ERROR: 20 SEVERITY: 10 MESSAGE: UNEXPECTED THEN OR WHEN

ERROR: 21 SEVERITY: 10 MESSAGE: UNEXPECTED ELSE OR OTHERWISE

ERROR: 22 SEVERITY: 10 MESSAGE: UNEXPECTED BREAK,LEAVE,or ITERATE

ERROR: 23 SEVERITY: 10 MESSAGE: INVALID STATEMENT IN SELECT

ERROR: 24 SEVERITY: 10 MESSAGE: MISSING OR MULTIPLE THEN

ERROR: 25 SEVERITY: 10 MESSAGE: MISSING OTHERWISE

ERROR: 26 SEVERITY: 10 MESSAGE: MISSING OR UNEXPECTED END

ERROR: 27 SEVERITY: 10 MESSAGE: SYMBOL MISMATCH

ERROR: 28 SEVERITY: 10 MESSAGE: INVALID DO SYNTAX

ERROR: 29 SEVERITY: 10 MESSAGE: INCOMPLETE IF OR SELECT

ERROR: 30 SEVERITY: 10 MESSAGE: LABEL NOT FOUND

ERROR: 31 SEVERITY: 10 MESSAGE: SYMBOL EXPECTED

ERROR: 32 SEVERITY: 10 MESSAGE: SYMBOL OR STRING EXPECTED

ERROR: 33 SEVERITY: 10 MESSAGE: INVALID KEYWORD

ERROR: 34 SEVERITY: 10 MESSAGE: REQUIRED KEYWORD MISSING

ERROR: 35 SEVERITY: 10 MESSAGE: EXTRANEOUS CHARACTERS

ERROR: 36 SEVERITY: 10 MESSAGE: KEYWORD CONFLICT

ERROR: 37 SEVERITY: 10 MESSAGE INVALID TEMPLATE

ERROR: 38 SEVERITY: 10 MESSAGE: INVALID TRACE REQUEST

ERROR: 39 SEVERITY: 10 MESSAGE: UNINITIALIZED VARIABLE

ERROR: 40 SEVERITY: 10 MESSAGE: INVALID VARIABLE NAME

ERROR: 41 SEVERITY: 10 MESSAGE: INVALID EXPRESSION

ERROR: 42 SEVERITY: 10 MESSAGE: UNBALANCED PARENTHESE

ERROR: 43 SEVERITY: 43 MESSAGE: NESTING LIMIT EXCEEDED

ERROR: 44 SEVERITY: 10 MESSAGE: INVALID EXPRESSION RESULT

ERROR: 45 SEVERITY: 10 MESSAGE: EXPRESSION REQUIRED

Arexx 15 / 152

ERROR: 46 SEVERITY: 10 MESSAGE: BOOLEAN VALUE NOT 0 OR 1

ERROR: 47 SEVERITY: 10 MESSAGE: ARITHMETIC CONVERSION ERROR

ERROR: 48 SEVERITY: 10 MESSAGE: INVALID OPERAND

1.14 appendixb

The ARexx interpreter is supplied as a shared library named
rexxsyslib.library and should reside in the system LIBS:directory. While
many of the library routines are highly specific to the interpreter,some of
the functions will be useful to applications that use ARexx. The library is
opened when the ARexx resident process is first loaded and will always be
available while it remains active.

The system library routines were designed to be called from assembly-language
programs and,unless otherwise noted,save all registers except for A0/A1 and
D0/D1. Many routines return values in more than one register to help reduce
code size. In addition,the routines will set the condition-code
register(CCR) wherever appropriate. In mode cases the CCR reflects the value
returned in D0.

The library offsets are defined in the file rxslib.i,which should be INDLUDEd
in the program source code. Calls may be made from "C" programs if suitable
binding routines are provided when the program is linked. The definitions
for the constants and data structures used in ARexx are provided as INCLUDE
files on the program distribution disk. These should be reviewed carefully
before attempting to use the library functions.

Limits
Compatibility

1.15 appendixc

Functional Groups

Library Functions

1.16 appendixd

The ARexx language system is distributed with an external ←↩
function library

that provides a number of Amiga-specific functions. It is a standard Amiga
shared library named rexxsupport.library and should reside in the system
LIBS:directory. Unlike the Systems Library described in the previous
Appendix,the support library functions are callable from with ARexx programs.

The support library was designed to supplement the generic Built-In functions

Arexx 16 / 152

with functions specific to the Amiga. This library will be expanded in
future releases,and users are encouraged to submit suggestions for additional
functions.

The Support Library must be added to the global Library List before it can be
accessed by ARexx programs. This can be done using the Built-In function
ADDLIB() or by direct communication with the resident process. The library
name must be specified as rexxsupport.library,the query function offset is
-30, and the version number is 0. The search priority can be set to 0 or
whatever value is appropriate.

ALLOCMEM()

CLOSEPORT()

FREEMEM()

GETARG()

GETPKT()

OPENPORT()

REPLY()

SHOWDIR()

SHOWLIST()

STATEF()

WAITPKT()

1.17 appendixe

This appendix lists the directores of the standard ARexx ←↩
distribution disk.

The contents of some of the directories may change from time to time,so your
disk may not show exactly the same files. Most notably,the :rexx directory
will expand as more program examples are included in it.

The second section of the Appendix lists the HEADER files that define the
constants and data structures used with ARexx. All of these files are
available in the :INCLUDE directory,but are listed here for convenience in
studying the structures.

Directories

The :C Directory

The :INCLUDE Directory

The :LIBS Directory

Arexx 17 / 152

The :REXX Directory

The :TOOLS Directory

Miscellaneous Files

Listings of Header Files

storage.h

rxslib.h

rexxio.h

errors.h

1.18 organization of this document

This document will attempt to fill the roles of User’s Manual,Language
Reference,and Programmer’s Guide. The chapters that follow have been
organized to provide a gently introduction to the language.

Chapter 1,What is ARexx?,gives an overview of the ARexx language and its
implementation of the Amiga.

Chapter 2,Getting Acquainted,tells how to install ARexx on your Amiga and
presents several example programs to illustrate the features of the language.

Chapter 3,Elements of the Language,introduces the language structure and
syntax.

Chapter 4,Instructions,describes the action statements of ARexx.

Chapter 5,Commands,describes the program statements used to communicate with
external programs.

Chapter 6,Functions,explains how functions are called and documents the
Built- In Function library.

Chapter 7,Tracing and Interrupts,describes the source level debugging
features useful for developing and testing programs.

Chapter 8,Parsing and Templates,describes the instructions used to extract
words or fields from strings.

Chapter 9,The Resident Process,describes the capabilities of the global
communications and resources manager.

Chapter 10,Interfacing to ARexx,describes how to design and implement an
interface between ARexx and an external program.

Appendix A,Error Messages,lists the error messages issued by the interpreter.

Appendix B,Limits and Compatibility,discusses the compatibility of ARexx with
the language standard.

Arexx 18 / 152

Appendix C,The ARexx Systems Library,documents the functions of ARexx systems
library.

Appendix D,The Support Library,documents the library of Amiga specific
functions.

Appendix E,Distribution Files,lists the files on the distribution disk.

Finally,a Glossary and an Index are provided.

1.19 using this manual

If you are new to the REXX language,or perhaps to programming itself,you
should review chapters 1 through 4 and then play with ARexx by running some
of the sample programs given in chapter 2. Further examples are available in
the :rexx directory of the distribution disk.

If you are already familiar with REXX you may wish to skip directly to
chapter 5,which begins to present some of the system-dependent features of
this implementation. A summary of the compatibility of ARexx with the
language definition is contained in Appendix B.

1.20 typographic conventions

Describing a language is sometimes difficult because of the multiple and
changing contexts involved. To help clarify the presentation here,a simply
typographic convention has been adopted throughout the document. All of the
terms and words specific to the REXX language,as well as the program examples
and computer input and output,have been set in typewriter font like this.
This should help to distinguish the language keywords and examples from the
surrounding text.

1.21 future directions

ARexx,like most software products,will probably envolve somewhat over the
next few years as new features are added,old bugs are removed,and market
imperatives become more apparant. While the core language will probably
undergo few modifications,many capabilities will be added to the function
libraries supported by ARexx. Your comments and suggestions for improvements
to ARexx are most welcome.

The author sincerely hopes that other software developers will consider using
ARexx with their products. The advantages of having a rich variety of
software products sharing a common user interface and a common procedural
interface cannot be overstated. This is the underlying promise of the
Amiga’s multitasking capability,and that which most sets it apart from other
inexpensive computers.

Example Programs. One of the best ways to learn a computer language is to

Arexx 19 / 152

study examples written by more experienced programmers. The ARexx
distribution disk includes a few example programs in the :rexx directory,and
more programs will be added in future releases.

If you have written REXX language program(for any computer)that you think
would be of interest to a more general audience,please send it to the author
for consideration. Programs should be of interest either in terms of their
specific funtionality or as an example of programming technique. Each
program submitted should include an author credit and a few lines of
commentary on its intended fuction.

ARexx is a high-level language useful for prototyping,software
integration,and general programming tasks. It is an implementation of the
REXX language described by M.F. Cowlishaw in The REXX Language:A Practical
Approach to Programming(Prentice-Hall,1985),and follow the language
definition closely. ARexx is particularly well suited as a command language.
Command programs, sometimes called "scripts" or "macros",are widely used to
extend the predefined commands of an operating system or to customize an
applications program.

As a programming language,ARexx can be useful to a wide cross section of
users. For the novice programmer,ARexx is an easy-to-learn yet powerful
language that serves as a good introduction to programming techniques. Its
source-level debugging facilities will help take some of the mystery out of
how programs work(or don’t work,as is more frequently the case.)

For the more sophisticated user,ARexx provides the means to build fully
integrated software packages,combining different applications programs into
an environment tailored to their needs. A common command language among
applications that support ARexx will bring uniformity to procedural
interfaces, much as the Amiga’s Intuition provides uniformity in the
graphical interface.

Finally,for the software developer,ARexx offers a straightforward way to
build fully programmable applications programs. Developers can concentrate
their efforts on making the basic operations of their programs fast and
efficient,and let the end user add the frills and custom features.

1.22 language features

Some of the important features of the language are:

TYPELESS DATA. Data are treated as typeless character strings. Variables do
not have to be declared before being used,and all operations dynamically
check the validity of the operands.

COMMAND INTERFACE. ARexx programs can issue commands to external programs
that provide a suitable command interface. Any software package that
implements the command interface is then fully programmable using ARexx,and
can be extended and customized by the end user.

TRACING AND DEBUGGING. ARexx includes source-level debugging facilities that
allow the programmer to see the step-by-step actions of a program as it runs,
thereby reducing the time required to develop and test programs. An internal
interrupt system permits special handling of errors that would otherwise

Arexx 20 / 152

cause the program to terminate.

INTERPRETED EXECUTION. ARexx programs are run by an interpreter,so separate
compilation and linking steps are not required. This makes it especially
useful for prototyping and as a learning tool.

FUNCTION LIBRARIES. External function libraries can be used to extend the
capabilities of the language or as bridges to other programs. Libraries also
allow ARexx programs to be used as "test drivers" for software development
and testing.

AUTOMATIC RESOURCE MANAGEMENT. Internal memory allocation related to the
creation and destruction of strings and other data structures is handled
automatically.

1.23 arexx on the amiga

ARexx was designed to run on the Amiga,and makes use of many of the features
of its multitasking operating system. ARexx programs run as separate tasks
and may communicate with each other or with external programs. The
interpreter follows the design guidelines expected of well-behaved programs
in a multitasking environment: specifcally,it uses as little memory as
possible and is careful to reutrn resources to the operating system when they
are no longer needed. Memory requirements were minimized by implementing the
entire ARexx system as a shared library,so that only one copy of the program
code must be loaded.

1.24 further information

The aforementioned book by M.F. Cowlishaw is highly recommended to those
interested in further information about REXX. It presents an interesting
discussion of the design and development of the language.

1.25 installing arexx

ARexx requires an Amiga computer with at least 256k of memory,and will
operate under V1.1 or V1.2 of the operating system. It uses the
double-precision math library called "mathieeedoubbas.library" that is
supplied with the Amiga WorkBench disk,so make sure that this file is present
in your LIBS: directory. The distribution disk includes the language
system,some example programs,and a set of the INCLUDE files required for
integrating ARexx with other software packages. The distribution files are
listed in Appendix E.

1.26 arexx and workbench

Arexx 21 / 152

ARexx can be installed and loaded from within the icon-based environment
provided by the Amiga WorkBench. However,it is a primarily a text-oriented
language system and requires a good text editor and file management
environment to be most effective. Unless you purchased ARexx as part of an
applications package that includes an integrated editor,you’ll probably find
it useful to becom familiar with the Commmand Line Interface (CLI)environment
on the Amiga.

1.27 installation

The ARexx language system consists of a shared library,a resident program,and
several command utilities. All of the required files are contained in the :c
and :libs directories of the distribution disk. ARexx may be installed on
any of the system disks with which it will be used,but first check the :c and
:libs directores of each disk to make sure that there are no naming
conflicts. The following steps will then install ARexx on the system
disk,provided that two disk drives are available:

1. Activate a CLI window.
2. Copy the ARexx :libs directory to the system LIBS: directory with the
command "copy df1:libs to libs:".
3. Copy the ARexx :c directory to the system C: directory with the command
"copy df1:C to c:".

SINGLE DRIVE SYSTEMS. Installing software in a single-drive system can be
very confusing,so an installation utility has been provided with the ARexx
distribution disk. It copies the :c and :libs directories of the
distribution disk into memory,and then prompts the user to insert each disk
that is to receive the files. Follow these steps to run the installation
utility:

1. Activate a CLI window.
2. Insert the distribution disk into drive 0 and type "df0:rxinstall".
3. At the program prompt,insert the system disk on which ARexx is to be
installed into drive 0.
4. Repeat step 3 as required.

1.28 starting the resident process

ARexx programs are launched by a background program called the resident
process. It can be started by issuing the command rexxmast and must be
active before any ARexx programs can be run. The rexxmast program briefly
displays a small window to announce itself,and then disappears into the
background to await your next request. If you will be using ARexx
frequently,you can place the rexxmast command in the "startup-sequence" file
that resides in the system S: directory. This will start the resident
process automatically when you reboot the computer.

After the resident process has been loaded,ARexx programs can be run from the
CLI by typing the command rx followed by the program name and any arguments.
For example,the sample program calc.rexx,which evaluates an expression,could

Arexx 22 / 152

be run by typeing "rx :rexx/calc 1+1."

You may not need to start up the resident process if you are using a software
package that starts it automatically. Applications that use ARexx can test
whether the resident process is active by checking for a public message port
named "REXX." If the port hasn’t been opened,the program can issue the
rexxmast command directly.

The resident process can be closed using the command rxc;it will then exit as
soon as the last ARexx program finishes execution. Unless you are very short
on memory space,there is usually no reason to close ARexx,as it simply waits
in the background for the next program to run.

1.29 naming conventions

ARexx programs can be named anything,but adopting a simple naming convention
will make managing the programs much easier. Programs to be run from the CLI
are usually given the file extention .rexx to distinguish them from programs
written in other languages. Programs written as "macros" or "scripts" for a
particular applications program should be given a file extension specific to
that program. For example,a macro written for a communications program
called "MyComm" might be named "download.myc". ARexx uses this file
extention when it searches for a program file to be executed.

1.30 the rexx directory

You can designate one directory as the system-wide source for ARexx programs
by defining a REXX: "device" with the assign command. This directory should
reside on a volume that is usually mounted,such as SYS: or a hard disk. For
example, the command "assign rexx: sys:rexx" defines the REXX: device as
the :rexx directory on the system disk. Once defined,the REXX: device is
searched after the current directory when looking for an ARexx program.

1.31 program examples

Before introducing the structure and syntax of the language,let’s look at a
few examples of ARexx programs. Readers familiar with other high-level
programming languages should find many points of similarity between ARexx and
other languages. In the examples that follow,new terms are highlighted in
the text as they are introduced,and will be convered in depth in the next few
chapters.

These short programs can be created using any text editor and then run from
the Command Line Interface (CLI),or may simply be read as samples of the
language. If the examples are to be run,first complete the installation
procedures outlined in the previous section,and then start the ARexx resident
process. Example programs can then be run by entering,for example,"rx age"
at the CLI prompt.

We’ll begin with a "Hello,World" program that simply displays a message on

Arexx 23 / 152

the console screen.

/* A simple program */
say ’Hello,World’

This program consists of a comment line that describes the program and an
instruction that displays text on the console. For historical reasons, ARexx
programs begin with a comment line;the initial "/*" says "I’m an ARexx
program" to the interpreter when it searches for a program.

Instructions are language statements that denote a certain action to be
performed,and always start with a symbol,in this case the word say. Symbols
are translated to uppercase when the program is run,so the symbol say here is
equivalent to SAY. Following say is an example of a string,which is a series
of characters surrounded by quotes (’). Double quotes (") could also have
been used to define the string.

In the next program we’ll display a prompt for input and then read some
information from the user.

/* Calculate age in days */
say ’Please enter your age’
pull age
say ’You are about’ age*365 ’days old’

This program uses the pull instruction to read a line of input into a
variable called age,which is then used with a say instuction. Variables are
symbols that may be assigned a value. The words following say form an
expression in which strings are joined and an arithmetic calculation is
performed.

Note that the variable age did not have to be declared as a
number;instead,its value was checked when it was actually used in the
expression. To see what would happen if age wasn’t a number,try rerunning
the program with a non-numeric entry for the age. The resulting error
message shows the line number and type of error that occurred,after which the
program ends.

The next program introduces the do instruction,which allows program
statements to be executed repeatedly. It also illustrates the exponentiation
operator, which is used to raise a number to an integral power.

/* Calculate some squares and cubes */
do i = 1 to 10 /* 10 interations */

say i i**2 i**3 /* calculations */
end

say ’ all done ’

The do instruction causes the statements between the do and end instructions
to be executed 10 times. The variable i is the index variable for the
loop,and is incremented by 1 for each iteration. The number following the
symbol to is the limit for the do instruction,and could have been a full
expression rather than just the constant 10. Note that the statements within
the loop have been indented. This is not required by the language,but it
makes the program more readable and is therefore good programming practice.

The subject of the next example is the if instruction,a often-used control

Arexx 24 / 152

statement that allows statements to be conditionally executed. The numbers
from 1 to 10 are classified as even or odd by dividing them by 2 and then
checking the remainder.

/* Even or odd? */
do i = 1 to 10

if i//2 = 0 then type = ’even’
else type = ’odd’

say i ’is’ type
end

This example intoduces the // arithmetic operator,which calculates the
remainder after a division operation. The if instruction tests whether the
remainder is 0 and executes the then branch if it is,thereby setting the
variable type to "even." If the remainder was not 0,the alternative else
branch is executed and type is set to "odd."

The next example introduces the concept of a function,which is a group of
statements that can be executed by mentioning the function name in a suitable
context. Functions are an important part of most programming languages,as
they allow large,complex programs to be built from smaller modules.
Functions are specified in an expression as a name followed by an open
parenthesis. One or more expressions called arguments may follow the
parenthesis;these are used to pass information to the function for
processing.

/* Defining and calling a function */
do i = 1 to 5

say i square(i) /* call square */
end

exit /* all done */
square: /* function name */
arg x /* get the "argument" */
return x**2 /* square it and return*/

The function square is defined in the lines followed the label square: up
through the return instruction. Two new instructions are introduced here:
arg retrieves the value of the argument string,and return passes the
functon’s result back to the point where the function was called.

One final example will suffice for now. A new instruction called trace is
used here to activate the tracing features of ARexx.

/* Demonstrate "results" tracing */
trace results
sum=0;sumsq=0;
do i = 1 to 5

sum = sum + i
sumsq = sumsq + i**2
end

say ’sum=’ sum ’sumsq=’ sumsq

When this program is run,the console displays the source lines as they are
excuted,and shows the final results of expressions. This makes it easy to
tell what the program is really doing,and helps reduce the time required to
develop and test a new program. One minor point is illustrated here: the
third line shows two distinct statements separated by a semicolon (;). The

Arexx 25 / 152

semicolon is an example of a special character,characters that have
particular meanings within ARexx programs.

The following chapters will present further information on the language
statements illustrated here and will introduce others that have not been
shown. Take heart,though;ARexx is a "small" language and there are
relatively few words and rules to learn.

1.32 format

ARexx programs are compossed of ASCII characters and may be created using any
text editor. No special formatting of the program statements is required or
imposed on the programmer.

1.33 tokens

The smallest distinct entities or "words" of the language are called tokens.
A token may be series of characters,as in the symbol MyName,or just a single
character like the "+" operator. Tokens can be categorized into comments,
symbols,strings,operators,and special characters. Each of these groups are
described below.

1.34 comment tokens

Any group of characters beginning with the sequence "/*" and ending with "*/"
defines a comment token. Comments may be placed anywhere in a program and
cost little in terms of execution speed,since they are stripped(removed)when
the program is first scanned by the interpreter. Comments may be "nested"
within one another,but each "/*" must have a matching "*/" in the program.
Examples:

/* Your basic comment */
/* a /* nested! */ comment */

1.35 symbol tokens

Any group of the characters a-z,A-Z,0-9,and .!?$_defines a symbol token.
Symbols are translated to uppercase as the program is scanned by the
interpreter,so the symbol MyName is equivalent to MYNAME. Four types of
symbols are recognized:

Fixed symbols begin with a digit (0-9) or a period(.).
Simple symbols do not begin with a digit,and do not contain any
periods.
Stem symbols have exactly one period at the end of the symbol name.
Compound symbols include one or more periods in the interior of the
name.

Arexx 26 / 152

Stems and compound symbols have special properties that make them useful for
building arrays and lists.

SYMBOLS VALUES. The value used for a fixed symbol is always the symbol name
itself(as translated to uppercase.) Simple,stem,and compound symbols are
called variables and may be assigned a value;the value used for an
uninitialized variable is just the variable name itself.
Examples:

123.45 /*a fixed symbol */
MyName /*same as MyName */
a. /*a stem symbol */
a.1.Index /*a compound symbol */

1.36 string tokens

A group of characters beginning and ending with a quote (’)or double quote(")
delimiter defines a string token. The delimiter character itself may be
included within the string by a double-delimiter sequence (" or ""). The
number of characters in the string is called its length,and a string of
length zero is called a null string. A string is treated as a literal in an
expression;that is,its value is just the string itself.

Strings followed immediately by an "X" or "B" character that is not part of a
longer symbol are classified as hex or binary strings,respectively,and must
be composed of hexadecimal digits(0-9,A-F) or binary digits(0,1). Blanks are
permitted at byte boundaries for added readability. Hex and binary strings
are convenient for specifying non-ASCII characters and for machine-specific
information like addresses in a program. They are converted immediately to
the "packed" internal form.
Examples:

"Now is the time" /*a simple example */
"" /*a null string */
’Can’t you see??’ /*Can’t you see?? */
’4A 3B CO’X /*a hex string */
’00110111’b /*binary for ’7’ */

1.37 operators

The characters +-*/=><*| may be combined in the sequences shown in Table 3.1
to form operator tokens. Operator sequences may include leading,trailing,and
embedded blanks,all of which are removed when the program is scanned. In
addition to the above characters,the blank character as a concatenation
operator if it follows a symbol or string and is not adjacent to an operator
or special character.

Each operator has an associated priority that determines the order in which
operations will be performed in an expression. Operators with higher
priorities before those with lower priorities.

TABLE 3.1 OPERATOR SEQUENCES

Arexx 27 / 152

SEQUENCE PRIORITY OPERATOR DEFINITION

8 Logical NOT
+ 8 Prefix Conversion
- 8 Prefix Negation

** 7 Exponentiation

* 6 Multiplication
/ 6 Division
% 6 Integer Division
// 6 Remainder
+ 5 Addition
- 5 Subtration
|| 4 Concatenation
(blank) 4 Blank Concatenation
== 3 Exact Equality
~== 3 Exact Inequality
= 3 Equality
~= 3 Inequality
> 3 Greater Than
>=,~< 3 Greater Than or Equal To
< 3 Less Than
<=,~> 3 Less Than or Equal To
& 2 Logical AND
| 1 Logical Inclusive OR
^,&& 1 Logical Exclusive OR

1.38 special character tokens

The characters :():,are each treated as a separate special character token
and have particular meanings within an ARexx program. Blanks adjacent to
these special characters are removed,except for those preceding an open
parenthesis or following a close parenthesis.

COLON (:). A colon,if preceded by a symbol token,defines a label within the
program. Lavels are locations in the program to which control may be
transferred under various conditions.

OPENING AND CLOSING PARENTHESES (()). Parentheses are used in expressions to
group operators and operands into subexpressions,in order to override the
normal operator primorities. An open parenthesis also serves to identify a
function call within an expression;a symbol or string followed immediately by
an open parenthesis defines a function name. Parentheses must always be
balanced within a statement.

SEMICOLON (;). The semicolon acts as a program statement terminator.
Several statements may be placed on a single source line if separated by
semicolons.

COMMA (,). A comma token acs as the continuation character for statements
that must be entered on several source lines. It is also used to separate
the argument expressions in a function call.

Arexx 28 / 152

1.39 clauses

Tokens are grouped together to form clauses,the smallest language unit that
can be executed as a statement. Every clause in ARexx can be classified as
either a null,label,assignment,instruction,or command clause. The
classification process is very simple,since no more than two tokens are
required to classify any clause. Assignment,instruction,and command clauses
are jointly termed statements.

CLAUSE CONTINUATION. The end of a source line normally acts as the implicit
end of a clause. A clause can be continued on the next source line by ending
the line with a comma (,). The commas is then removed,and the next line is
considered as a continuation of the clause. There is no limit to the number
of continuations that may occur. String and comment tokens are automatically
continued if a line end before the closing delimiter has been found,and the
"newline" character is not considered to be part of the token.

MULTIPLE CLAUSES. Several clauses can be placed on a single line by
separating them with semicolons(;).

1.40 null clauses

Lines consisting only of blanks or comments are called null clauses. They
have no function in the execution of a program,except to aid its readability
and to increment the source line count. Null clauses may appear anywhere in
a program.
Example:

/* perform annuity calculations */

1.41 label clauses

A symbol followed immediately by a colon defines a label clause. A label
acts as a placemarker in the program,but no action occurs with the
"execution" of a label. The colon is considered as an implicit clause
terminator,so each label stands as a separate clause. Label clauses may
appear anywhere in a program.
Examples:

start: /* begin execution */
syntax: /* error processing */

1.42 assignment clauses

Assignments are identified by a variable symbol followed by an "=" operator.
In this context the operator’s normal definition(an equality comparison)is
overridden,and it becomes an assignment operator. The tokens to the right of
the "=" are evaluated as an expression,and the result is assigned to(becomes
the value of)the variable symbol.

Arexx 29 / 152

Examples:

when= ’Now is the time’
answ= 3.14 * fact(5)

1.43 instruction clauses

Instructions begin with certain keyword symbols,each of which denotes a
particular action to be performed. Instruction keywords are recognized as
such only at the beginning of a clause,and may otherwise be used freely as
symbols (although such use may become confusing at times.) The ARexx
instructions are described in detail in Chapter 4.
Examples:

drop a b c /* reset variables */
say ’please’ /* a polite program */
if j > 5 then leave; /* several instructions */

1.44 command clauses

Commands are any ARexx expression that can’t be classified as one of the
preceding types of clauses. The expression is evaluated and the result is
issued as a command to an external host,which might be the native operating
system or an application program. Commands are discussed in Chapter 5,and
the details of the host command interface are given in Chapter 10.
Examples:

’delete’ ’myfile’ /* a DOS command */
’jump’ current+10 /* an editor command? */

1.45 clause classification

The process by which program lines are divided into clauses and then
classified is important in understanding the operation of an ARexx program.
The language interpreter splits the program source into groups of clauses as
the program is read,using the end of each line as a clause separator and
applying the continuation rule as required. These groups of one or more
clauses are then tokenized,and each clause is classified into one of the
above types. Note that seemingly small syntactic differences may completely
change the semantic content of a statement. For example,

SAY ’Hello, Bill’

is an instruction clause and will display "Hello, Bill" on the console,but

""SAY ’Hello, Bill’

is a command clause,and will issue "SAY Hello, Bill" as a command to an
external program. The presence of the leading null string changes the

Arexx 30 / 152

classification from an instruction clause to a command clause.

1.46 expressions

Expression evaluation is an important part of ARexx programs,since most
statements include at least one expression. Expressions are composed of
strings,symbols,operators,and parentheses. Strings are used as literals in
an expression;their value in an operation is just the string itself. Fixed
symbols are also literals(remember that symbols are always translated to
uppercase,) but variable symbols may have an assigned value. Operator tokens
represent the predefined operations of ARexx;each operator has an associated
priority that determines the order in which operations will be performed.
Parentheses may be used to alter the normal order of evaluation in the
expression,or to identify function calls. A symbol or string followed
immediately by an open parenthesis defines the function name,and the tokens
between the opening and(final)closing parenthesis form the argument list for
the function.

For example,the expression "J ’fractorial is’ fact(J)" is composed of a
symbol J,a blank operator,the string ’factorial is’,another blank,the symbol
fact,an open parenthesis,the symbol J again,and a closing parenthesis. FACT
is a function name and (J) is its argument list,in this case the single
expression J.

1.47 symbol resolution

Before the evaluation of an expression can proceed,the interpreter must
obtain a value for each symbol in the expression. For fixed symbols the
value is just the symbol name itself,but variable symbols must be looked up
in the current symbol table. In the example above,the expression after
symbol resolution would be "3 ’factorial is’ FACT(3)," assuming that the
symbol J had the value 3.

Suppose that the example above had been "FACT(J) ’is’ J ’factorial’." Would
the second occurrence of symbol J still resolve to 3 in this case? In
general, function calls may have "side effects" that include altering the
values of variables,so the value of J might have been changed by the call to
FACT. In order to avoid ambiguities in the values assigned to symbols during
the resolution process, ARexx guarantees a strict left-to-right resolution
order. Symbol resolution proceeds irrespective of operator priority or
parenthetical grouping;if a function call is found,the resolution is
suspended while the function is evaluated. Note that it is possible for the
same symbol to have more than one value in an expression.

1.48 order of evaluation

After all symbol values have been resolved,the expression is evaluated based
on operator priority and subexpression grouping. Operators of higher
priority are evaluated first. ARexx does not guarantee an order of
evaluation among operators of equal priority,and does not employ a "fast

Arexx 31 / 152

path" evaluation of boolean operators. For example,in the expression

(1 = 2) & (FACT(3) = 6)

the call to the FACT function will be made,although it is clear that the
final result will be 0,since the first term of the AND operation is 0.

1.49 numbers and numeric precision

An important class of operands are those representing numbers. Numbers
consist of the characters 0-9,.+-,and blanks;an e or E may follow a number to
indicate exponential notation,in which case it must be followed by a (signed)
integer).

Both string tokens and symbol tokens may be used to specify numbers. Since
the language is typeless,variables do not have to be declared as "numeric"
before being used in an arithmetic operation. Instead,each value string is
examined when it is used to verify that it represents a number. The
following examples are all valid numbers:

33
" 12.3 "
0.321e12
’ + 15.’

Note that leading and trailing blanks are permitted,and that blanks may be
embedded between a "+" or "-" sign and the number body(but not within the
body.)

1.50 boolean values

The numbers 0 and 1 are used to represent the boolean values False and True,
respectively. The use of a value other than 0 or 1 when a boolean operand is
expected will generate an error. Any number equivalent to 0 or 1,for example
"0.000" or "0.1E1," is also acceptable as a boolean value.

1.51 numeric precision

ARexx allows the basic precision used for arithmetic calculations to be
modified while a program is executing. The number of significant figures
used in arithmetic operations is determined by the Numeric Digits environment
variable, and may be modified using the NUMERIC instruction.

The number of decimal places used for a result depends on the operation
performed and the number of decimal places in the operands. Unlike many
languages,ARexx preserves trailing zeroes to indicate the precision of the
result. If the total number of digits required to express a value exceeds
the current Numeric Digits setting,the number is formatted in exponential
notation. Two such formats are provided:

Arexx 32 / 152

In SCIENTIFIC notation,the exponent is adjusted so that a single digit is
placed to the left of the decimal point.

in ENGINEERING notation,the number is scaled so that the exponent is a
multiple of 3 and the digits to the left of the decimal point range from 1 to
999.

The numeric precision and format can be set using the NUMERIC instruction.

1.52 unnamed.1

Operators can be grouped into four categories:

Arithmetic operators require one or two numeric operands,and produce a
numeric result. Concatenation operators join two strings into a single
string. Comparison operators require two operands,and produce a boolean(0 or
1) result. Logical Operators require one or two boolean operands,and produce
a boolean result.

1.53 arithmetic operators

The aritmetic operators are listed in Table 3.2 below. Note the inclusion of
the integer division(%)and remainder(//)operators,along with the usual
arithmetic operations. The result of an arithmetic operation is always
foratted based on the current Numeric Digits setting,and will never have
leading or trailing blanks.

TABLE 3.2 ARITHMETIC OPERATORS
SEQUENCE PRIORITY OPERATION
+ 8 Prefix Conversion
- 8 Prefix Negation

** 7 Exponentiation

* 6 Multiplication
/ 6 Division
% 6 Integer Division
// 6 Remainder
+ 5 Addition
- 5 Subtraction

PREFIX CONVERSION(+). This unary operator converts the operand to and
internal numeric form and formats the result based on the current Numeric
Digits settings. This causes any leading and trailing blanks to be
removed,and may result in a loss of precision.
Examples:

’ 3.12 ’ ==> 3.12
1.5001 ==> 1.500 /* If digits = 3 */

PREFIX NEGATION(-). This unary operator negates the operand. The result is
formatted based on the current Numeric Digits setting.

Examples:

Arexx 33 / 152

-’ 3.12 ’ ==> -3.12
1.5E2 ==>-150

EXPONENTIATION(**). The left operand is raised to the power specified by the
right operand,which must be an integer. The number of decimal places for the
result is the product of the exponent and the number of decimal places in the
base.
Examples:

2**3 ==>8
3**-1 ==>.333333333
0.5**3 ==>0.125

MULTIPLICATION(*). The product of two numbers is computed. The number of
decimal places for the result is the sum of the decimal places of the
operands. Examples:

12 * 3 ==>36
1.5 * 1.50 ==>2.250

DIVISION(/). The quotient of two numbers is computed. The number of decimal
places for the result depends on the current setting of the numeric DIGITS
variable;the nuber is formatted to the maximum precision required.
Examples:

6 / 3 ==>2
8 / 3 ==>2.66666667

INTEGER DIVISION(%). The quotient of two numbers is computed,and the integer
part of the quotient is used as the result.
Examples:

5 % 3 ==>1
-8 % 3 ==>-2

REMAINDER(//). The result is the remainder after the two operands are
divided. The remainder for "a//b" is calculated as "a-(a%b)*b." If both
operands are positive integers,this operation yields the usual "modulo"
result.
Examples:

5 // 3 ==>2
-5 // 3 ==>-2
5.1 // 0.2 ==>0.1

ADDITION(+). The sum of two numbers is computed. The number of decimal
places for the result is the larger of the decimal places of the operands.
Examples:

12 + 3 ==>15
3.1 + 4.05 ==>7.15

SUBTRATION(-). The difference of two numbers is computed. As in the case of
addition,the number of decimals places for the result is the larger of the
decimal places of the operands.
Examples:

Arexx 34 / 152

12 - 3 ==>9
5.55 - 1.55 ==>4.00

1.54 concatenation operators

ARexx defines two concatenation operators,both of which require two operands.
The first,identified by the operator sequence "||",joins two strings into a
single string with no intervening blank. The second concatenation operation
is identified by the blank operator,and joins the two operand strings with
one intervening blank.

An implicit concatenation operator is recognized when a symbol and a string
are directly abutted in an expression. Concatenation by abuttal uses the
"||" operator,and behaves exactly as though the operator had been provided
explicitly.
Examples:

’why me,’ || ’Mom?’ ==>why me,Mom?
’good’ ’times’ ==>good times
one’two’three ==>ONEtwoTHREE

1.55 comparison operators

Comparisons are performed in one of three modes,and always result in a
boolean value (0 or 1.)

Exact comparisons proceed character-by-character,including any leading blanks
that may be present. String comparisons ignore leading blanks,and pad the
shorter string with blanks if necessary.

Numeric comparisons first convert the operands to an internal numeric form
using the current Numeric Digits setting,and then perform a standard
arithmetic comparison.

Except for the exact equality and exact inequality operators,all comparison
operators dynamically determine whether a string of numeric comparison is to
be performed. A numeric comparison is performed if both operands are valid
numbers otherwise,the operands are compared as strings.

TABLE 3.3 COMPARISON OPERATORS

SEQUENCE PRIORITY OPERATION MODE

== 3 Exact Equality Exact
~== 3 Exact Inequality Exact
= 3 Equality String/Numeric
~= 3 Inequality String/Numeric
> 3 Greater Than String/Numeric
>=,~< 3 Greater Than or Equal String/Numeric
< 3 Less Than String/Numeric
<=,~> 3 Less Than or Equal String/Numeric

Arexx 35 / 152

1.56 logical (boolean) operators

ARexx defines the four logical operations NOT,AND,OR,and Exclusive OR,all of
which require boolean operands and produce a boolean result. Boolean
operands must have values of either 0(False)or 1(True.) An attempt to perform
a logical operation on a non-boolean operand will generate an error.

TABLE 3.4 LOGICAL OPERATORS

SEQUENCE PRIORITY OPERATION

~ 8 NOT(Inversion)
& 2 AND
| 1 OR
^,&& 1 Exclusive OR

1.57 stems and compound symbols

Stems and compound symbols have special properties that allow for some
interesting and unusual programming. A compound symbol can be regarded as
having the structure stem.n1.n2.n3...nk where the leading name is a stem
symbol and each node n1...nk is a fixed or simple symbol. Whenever a
compound symbol appears in a program,its name is expanded by replacing each
node with its current value as a (simple) symbol. The value string may
consist of any characters,including embedded blanks,and is not converted to
uppercase. The result of the expansion is a new name that is used in place
of the compound symbol. For example if j has the value of 3 and k has the
value 7,then the compound symbol a.j.k will expand to A.3.7.

Stem symbols provide a way to initialize a whole class of compound symbols.
When an assignment is made to a stem symbol,it assigns that value to all
possible compound symbols derived from the stem. Thus,the value of a
compound symbol depends on the prior assignments made to itself or its
associated stem.

Compound symbols can be regarded as a form of "associative" or "content-
addressable" memory. For example,suppose that you needed to store and
retrieve a set of names and telephone numbers. The conventional approach
would be to set up two arrays NAME and NUMBER,each indexed by an integer
running from one to the number of entries. A number would be "looked up" by
scanning the name array until the given name was found,say in NAME.12,and
then retrieving NUMBER.12. With compound symbols,the symbol NAME could hold
the name to be looked-up,and NUMBER.NAME would then expand to NUMBER.Bill(for
example),which be the corresponding number.

Of course,compound symbols can also be used as conventional indexed
arrays,with the added convenience that only a single assignment(to the
stem)is required to initialize the entire array.

1.58 the execution environment

Arexx 36 / 152

The ARexx interpreter provides a uniform environment by running each program
as a separate task(actually,as a DOS process)in the Amiga’s multitasking
operating system. This allows for a flexible interface between an external
host program and the interpreter,as the host can either proceed concurrently
with its operations or can simply wait for the interpreted program to finish.

1.59 the external environment

The external environment of a program includes its task(process)structure,
input and output streams,and current directory. When each ARexx task is
created,it inherits the input and output streams and current directory from
its client,the external program that invoked the ARexx program. The current
directory is used as the starting point in a search for a program or data
file.

EXTERNAL PROGRAMS. The external environment usually includes one or more
external programs with which the ARexx program may communicate. Any program
that supports a suitable interface can receive commands from ARexx programs.
The command interface is discussed in Chapter 5.

1.60 the internal environment

The internal environment of an ARexx program consists of a static global
structure and one or more storage environments. The global data values are
fixed at a time the program is invoked,and include the argument
strings,program source code,and static data strings. The storage environment
includes the symbol table used for variable values,the numeric options,trace
options,and host address strings. While the global environment is
unique,there may be many storage environments during the course of the
program execution. Each time an internal function is called a new storage
environment is activated and initialized. The initial values for most fields
are inherited from the previous environment,but values may be changed
afterwards without affecting the caller’s environment. The new environment
persists until control returns from the function.

ARGUMENT STRINGS. A program may receive one or more argument strings when it
is first invoked. These arguments persist for the duration of the program
and are never altered. The number of arguments a program receives depends in
part on the mode of invocation. ARexx programs invoked as commands normally
have only one argument string,although the "command tokenization" option may
provide more than one. A program invoked as a function can have any number
of arguments if called as an internal function,but external functions are
limited to a maximum of 15 arguments.

The argument strings can be retrieved using either the ARG instruction or the
ARG() Built-In function. ARG() can also return the total number of
arguments,or the status(as "exists" or "omitted")of a particular argument.

THE SYMBOL TABLE. Every storage environment includes a symbol table to store
the value strings that have been assigned to variables. This symbol table is
organized as a two-level stores entries for simple and stem symbols,and the

Arexx 37 / 152

secondary level is used for compound symbols. All of the compound symbols
associated with a particular stem are stored in one tree,with the root of the
tree held by the entry for the stem.

Symbols are not entered into the table until an assignment is made to the
symbol. Once created,entries at the primary level are never removed,even if
the symbol subsequently becomes uninitialized. Secondary trees are released
whenever an assignment is made to the stem associated with the tree.

For the most part ARexx programmers need not be concerned with the details of
storage environments except to understand what values are saved when a
function is called. Applications developers who need to manipulate
environment values should refer to the structure definitions in the INCLUDE
files provided on the ARexx distribution disk.

1.61 input and output

Most computer programs require some means of communicating with the outside
world,either to accept input data or to pass along results. The REXX
language includes only a minimal specification of input and output
(I/O)operations, leaving the choice of additional functionality to the
language implementor. This is in keeping with the design of many computer
languages. For instance,the "C" language has no statements dedicated to
I/O,but instead relies on a standardized set of I/O functions.

ARexx extends the I/O facilities fo REXX by providing Built-In functions to
manipulate external files. Files are referenced by a logical name associated
with the file when it is first opened. The initial input and output streams
are given the names STDIN and STDOUT.

ARexx maintains a list of all of the files opened by a program and
automatically closes them when the program finishes. There is no limit to
the number of files that may be open simultaneously.

1.62 resource tracking

ARexx provides complete tracking for all of the dynamically-allocated
resources that it uses to execute a program. These resources include memory
space,DOS files and related structures,and the message port structures
supported by ARexx. The tracking system was designed to allow a program to
"bail out" at any point(perhaps due to an execution error)without leaving any
hanging resources.

It is possible to go outside of the interpreter’s resource tracking net by
making calls directly to the Amiga’s operating system from within an ARexx
program. In these cases it is the programer’s responsibility to track and
return all of the allocated resources. ARexx provides a special interrupt
facility so that a program can retain control after an execution
error,perform the required cleanup,and then make an orderly exit. Chapter 7
has information on the ARexx interrupt system.

Arexx 38 / 152

1.63 address

Usage: ADDRESS [Symbol|string|VALUE] [expression]]
This instruction specifies a host address for commands issued by the
interpreter. A host address is the name associated with an external program
to which commands can be sent;external hosts are described in Chapter 5.
ARexx maintains two host addresses:a "current" and a "previous"address is
lost,and the "current" and a "previous" value. Whenever a new host address
is supplied, the "previous" address is lost,and the "current" address becomes
the "previous" one. These host addresses are part of a program’s storage
environment and are preserved across internal function calls. The current
address can be retrieved with the Built-In function ADDRESS(). There are
four distinct forms for the ADDRESS instruction:

ADDRESS {string | symbol} expression. The expression is evaluated and the
result is issued to the host specified by the string or symbol,which is taken
as a literal. No changes are made to the current or previous address
strings. This provides a convenient way to issue a single command to an
external host without disturbing the current host addresses. The return code
from the command is treated as it would be from a command clause.

ADDRESS {string | symbol}. The string or symbol,taken as a literal,specifies
the new host address. The current host address becomes the previous address.

ADDRESS [VALUE] expression. The result of the expression specifies the new
host address,and the current address becomes the previous address. The VALUE
keyword may be omitted if the first token of the expression is not a symbol
or string.

ADDRESS. This form interchanges the current and previous hosts. Repeated
execution will therefore "toggle" between the two host addresses.

Examples:

address edit /* set an new host address */
address edit ’top’ /* move to the top */
address VALUE edit n /* compute a new host address */
address /* swap current and previous */

1.64 arg

Usage: ARG [template] [,template...]
ARG is shorthand form for the PARSE UPPER ARG instruction. It retrieves one
or more of the argument strings available to the program,and assigns values
to the variables in the template. The number of argument strings available
depends on the whether the program was invoked as a command or a function.
Command invocations normally have only one argument string,but functions may
have up to 15. The argument strings are not altered by the ARG instruction.

The structure and processing of templates is described briefly with the PARSE
instruction,and in greater depth in Chapter 8.

Example:

arg first,second /* fetch arguments */

Arexx 39 / 152

1.65 break

Usage: BREAK
The BREAK instruction is used to exit from the range of a DO instruction or
from within an INTERPRETed string,and is valid only in these contexts. If
used within a DO statement,BREAK exits from the innermost DO statement
containing the BREAK. This contrasts with the otherwise similar LEAVE
instruction,which exits only from an interative DO.

Example:

do /* begin block */
if i>3 then break /* all done? */
a = a + 1
y.a = name
end /* end block */

1.66 call

Usage: CALL {symbol | string} [expression] [,expression,...]
The CALL instruction is used to invoke an internal or external function. The
function name is specified by the symbol or string token,which is taken as a
literal. Any expressions that follow are evaluated and become the arguments
to the called function. The value returned by the function is assigned to
the special variable RESULT. It is not an error if a result string is not
returned; in this case the variable RESULT is DROPed(becomes uninitialized.)

The linkage to the function is established dynamically at the time of the
call. ARexx follows a specific search order in attempting to locate the
called function;this process is described in Chapter 6.

Example:

call center name,length+4,’+’

1.67 do

Usage: DO [var=exp] [To exp] [BY exp]] [FOR exp] [FOREVER] [WHILE exp | UNTIL
exp]
The DO instruction begins a group of instructions to be executed as a block.
The range of the DO instruction includes all statements up to and including
an eventual END instruction. There are two basic forms of the instruction:

The DO keyword by itself defines a block of instructions to be executed once.

If any iteration specifiers follow the DO keyword,the block of instructions
is executed repeatedly until a termination condition occurs.

An interative DO instruction is sometimes called a "loop",since the
interpreter "loops back" to perform the instruction repeatedly. The various
parts of the DO instruction are described below.

Initializer expression. An initializer expression of the form "variable=
expression" defines the index variable of the loop. The expression is

Arexx 40 / 152

evaluated when the DO range is first activated,and the result is assigned to
the index variable. On subsequent iterations an expression of the form
"variable = variable + increment" is evaluated,where the increment is the
result of the BY expression. If specified, the initializer expression must
precede any of the other subkeywords.

BY expression. The expression following a BY symbol defines the increment to
be added to the index variable in each subsequent iteration. The expression
must yield a numeric result,which may be positive or negative and need not be
an integer. The default increment is 1.

TO expression. The result of the TO expression specifies the upper(or lower)
limit for the index variable. At each iteration the index variable is
compared to the TO result. If the increment(BY result)is positive and the
variable is greater than the limit,the DO instruction terminates and control
passes to the statement following the END instruction. Similarly,the loop
terminates if the increment is negative and the index variable is less than
the limit.

FOR expression. The FOR expression must yield a positive whole number when
evaluated,and specifies the maximum number of iterations to be performed.
The loop terminates when this limit is reached irrespective of the value of
the index variable.

FOREVER. The FOREVER keyword can be used if an iterative DO instruction is
required but no index variable is necessary. Presumably the loop will be
terminated by a LEAVE or BREAK instruction contained within the loop body.

WHILE expression. The WHILE expression is evaluated at the beginning of each
iteration and must result in a boolean value. The iteration proceeds if the
result is 1; otherwise, the loop terminates.

UNTIL expression. The UNTIL expression is evaluated at the end of each
iteration and must result in a boolean value. The instruction continues with
the next iteration if the result is 0, and terminates otherwise.

The initializer,BY,TO,and FOR expressions are evaluated only when the
instruction is first activated,so the increment and limits are fixed
throughout the execution. Note that a limit need not be supplied;for
example,the instruction "DO i=1" will simply count away forever. Note also
that only one of the WHILE or UNTIL keywords can be specified.

Example:

do i=1 to limit for 5 while time <50
y.1=i*time
end

1.68 drop

Usage: DROP variable [variable...]
The specified variable symbols are reset to their uninitialized state,in
which the value of the variable is the variable name itself. It is not an
error to DROP a variable that is already uninitialized. DROPping a stem
symbol is equivalent to DROPping the values of all possible compound symbols
derived from that stem.

Arexx 41 / 152

Example:

a=123 /* assign a value */
drop a b /* drop some */
say a b /* ==>A B */

1.69 echo

Usage: ECHO [expression]
The ECHO instruction is a synonym for the SAY instruction. It displays the
expression result on the console.

Example:

echo "You don’t SAY!"

1.70 else

Usage: ELSE [;] [conditional statement]
The ELSE instruction provides the alternative conditional branch for an IF
statement. It is valid only within the range of an IF instruction,and must
follow the conditional statement of the THEN branch. If the THEN branch
wasn’t executed,the statement following the ELSE clause is performed.

Binding. ELSE clauses always bind to the nearest(preceding)IF statement. It
may be necessary to provide "dummy" ELSE clauses for the inner IF ranges of a
compound IF statement in order to allow alternative branches for the outer IF
statements. In this case it is not sufficient to follow the else with a
semicolon or a null clause. Instead,the NOP(no-operation)instruction can be
used for this purpose.

Example:

if 1 > 2 then say ’really?’
else say ’I thought so’

1.71 end

Usage: END [variable]
The END instruction terminates the range of a DO or SELECT instruction. If
the optional variable symbol is supplied,it is compared to the index variable
of the DO statement(which must therefore be iterative). An error is
generated if the symbols do not match,so this provides a simple mechanism for
matching the DO and END statements.
Example:

do i=1 to 5 /* index variable is I */
say i
end i /* end "I" loop */

Arexx 42 / 152

1.72 exit

Usage: EXIT [expression]
The EXIT instruction terminates the execution of a program,and is valid
anywhere within a program. The evaluated expression is passed back to the
caller as the function or command result.

Results Processing. The processing of the EXIT result depends on whether a
result string was requested by the calling program,and whether the current
invocation resulted from a command or function call. If a result string was
requested,the expression result is copied to a block of allocated memory and
a pointer to the block is returned as the secondary result of the call.

If the caller did not request a result string,and the program was invoked as
a command,then an attempt is made to convert the expression result to an
integer. This value is then returned as the primary result,with 0 as the
secondary result. This allows the EXIT expression to be interpreted as a
"return code" by the caller. Refer to Chapter 10 for further information on
the data structures used to return the result string.

Examples:

exit /* no result needed */
exit 12 /* an error return? */

1.73 if

Usage: IF expression [THEN] [;] [conditional statement]
The IF instruction is used in conjunction with THEN and ELSE instruction to
conditionally execute a statement. The result of the expression must be a
boolean value. If the result is 1 (True),the statement following the THEN
symbol is executed;otherwise,control passes to the next statement(which might
be an ELSE clause.) The THEN keyword need not immediately follow the IF
expression,but may appear as a separate clause. The instruction is actually
analyzed as "IF expression; THEN; statement;." In essence,the IF statement
begins a syntactic range and establishes the test condition that determines
whether subsequent THEN or ELSE clauses will be performed.

Any valid statement may follow the THEN symbol;in particular,a "DO; ...
END;" group allows a series of statements to be performed conditionally.

Examples:

if result < 0 then exit /* all done? */

1.74 interpret

Usage: INTERPRET expression
The expression is evaluated and the result is executed as one or more program
statements. The statements are considered as a group,as though surrounded by
a "DO; ...;END" combination. Any statements can be included in the
INTERPRETed source,including DO or SELECT instruction.

An INTERPRET instruction activates a control range when it is executed,which

Arexx 43 / 152

serves as a "fence" for LEAVE and ITERATE instructions. These instructions
can therefore be used only with DO-loops defined within the INTERPRET. The
BREAK instuction can be used to terminate the processing of INTERPRETed
statements. While it is not an error to include label clauses within the
interpreted string,only those labels defined in the original source code are
searched during a transfer of control.

The INTERPRET instruction can be used to solve programming problems in
interesting and novel ways. Programs can be constructed dynamically and then
executed using this instruction,or program fragments may be passed as
arguments to functions,which then INTERPRET them.

Example:

inst = ’say’ /* an instruction */
interpret inst hello /* ..."say HELLO" */

1.75 iterate

Usage: ITERATE [variable]
The ITERATE instruction terminates the current iteration of a DO instruction
and begins the next iteration. Effectively,control passes to the END
statement and then(depending on the outcome of the UNTIL expression)back to
the DO statement. The instruction normally acts on the innermost iterative
DO range containing the instruction. An error results if the LEAVE
instruction is not contained within an iterative DO instruction.

The optional variable symbol specifies which DO range is to be exited,in the
event that several nested ranges exist. The variable is taken as a literal
and must match the index variable of a currently active DO instruction. An
error results if no such matching DO instruction is found.

Example:

do i=1 to 3
if i=j then iterate i
end

1.76 leave

Usage:LEAVE [variable]
LEAVE forces an immediate exit from the iterative DO range containing the
instruction. An error results if the LEAVE instruction is not contained
within an iterative DO instruction.

The optional variable symbol specifies which DO range is to be exited,in the
event that several nested ranges exist. The variable is taken as a literal
and must match the index variable of a currently active DO instruction. An
error results if no such matching DO instruction is found.

Example:

do i=1 to limit
if i > 5 then leave /* maximum iterations */

Arexx 44 / 152

end

1.77 nop

Usage: NOP
The NOP or "no-operation" instruction does just that:nothing. It is provided
to control the binding of ELSE clauses in compound IF statements.

Example:

if i=j then /* first (outer) IF */
if j=k then a=o /* inner IF */
else nop /* binds to inner IF */
else a=a+1 /* binds to outer IF */

1.78 numeric

Usage: NUMERIC {DIGITS | FUZZ} expression
or: NUMERIC FORM {SCIENTIFIC | ENGINEERING}

This instruction sets options relating to the numeric precision and format.
The valid forms of the NUMERIC instruction are:

NUMERIC DIGITS expression. Specifies the number of digits of precision for
arithmetic calculations. The expression must evaluate to a positive whole
number.

NUMERIC FUZZ expression. Specifies the number of digits to be ignored in
numeric comparison operations. This must be a positive whole number that is
less than the current DIGITS setting.

NUMERIC FORM SCIENTIFIC. Specifies that numbers that require exponential
notation be expressed in SCIENTIFIC notation. The exponent is adjusted so
that the mantissa (for non-zero) numbers) is between 1 and 10. This is the
default format.

NUMERIC FORM ENGINEERING. Selects ENGINEERING format for numbers that
require exponential notation. ENGINEERING format normalizes a number so that
its exponent is a multiple of three and the mantissa(if not 0)is between 1
and 1000.

The numberic options are preserved when an internal function is called.
Examples:

numeric digits 12 /* precision */
numeric form scientific /* format */

1.79 options

Usage: OPTIONS [FAILAT expression]
or: OPTIONS [PROMPT expression]
or: OPTIONS [RESULTS]

Arexx 45 / 152

The OPTIONS instruction is used to set various internal defaults. The FAILAT
expression sets the limit at or above which command return codes will be
signalled as errors,and must evaluate to an integer value. The PROMPT
expression provides a string to be used as the prompt with the PULL (or PARSE
PULL)instruction. The RESULTS keyword indicates that the interpreter should
request a result string when it issues commands to an external host.

The internal options controlled by this instruction are preserved across
function calls,so an OPTIONS instruction can be issued within an internal
function without affecting the callers environment. If no keyword is
specified with the OPTIONS instuction,all controlled options revert to their
default settings.

Example:

options failat 10
options prompt "Yes Boss?"
options results

1.80 otherwise

Usage: OTHERWISE [;] [conditional statement]
This instruction is valid only within the range of a SELECT instruction,and
must follow the "WHEN ... THEN" statements. If none of the preceding WHEN
clauses have succeeded,the statement following the OTHERWISE instruction is
executed. An OTHERWISE is not mandatory within a SELECT range. However,an
error will result if the OTHERWISE clause is omitted and none of the WHEN
instructions succeed.

Example:

select
when i=1 then say ’one’
when i=2 then say ’two’
otherwise say ’other’
end

1.81 parse

Usage: PARSE [UPPER] inputsorce [template] [,template...]
The PARSE instruction provides a mechanism to extract one or more substrings
from a string and assign them to variables. The input string can come from a
variety of sources,including argument strings,an expression,or from the
console. The template provides both the variables to be given values and the
way to determine the value strings. The template may be omitted if the
instruction is intended only to create the input string. The different
options of the instruction are described below.

The sources for the input strings are specified by the keyword symbols listed
below. When multiple templates are supplied,each template receives a new
input string, although for some source options the new string will be
identical to the previous one. The input source string is copied before
being parsed,so the original strings are never altered by the parsing
process.

Arexx 46 / 152

UPPER. This optional keyword may be used with any of the input sources,and
specifies that the input string is to be translated to uppercase before being
parsed. It must be the first token following PARSE.

ARG. This input option retrieves the argument strings supplied when the
program was invoked. Command invocations normally have only a single
argument string, but functions may have up to 15 argument strings. Multiple
templates may be given to retrieve successive argument strings.

EXTERNAL. The input strings is read from the console. If multiple templates
are supplied,each template will read a new string. This source option is the
same as PULL.

NUMERIC. The current numeric options are placed in a string in the order
DIGITS,FUZZ,and FORM,separated by a single space.

PULL. Reads a string from the input console. If multiple templates are
supplied,each template will read a new string.

SOURCE. The "source" string for the program is retrieved. This string is
formatted as "{COMMAND | FUNCTION} {0 | 1} called resolved ext host." The
first token indicates whether the program was invoked as a command or as a
function. The second token is a boolean flag indicating whether a result
string was requested by the caller. The called token is the name used to
invoke this program,while the resolved token is the final resolved name of
the program. The ext token is the file extension to be used for
searching(the default is "REXX"). Finally,the host token is the initial host
address for commands.

VALUE expression WITH. The input string is the result of the supplied
expression. The WITH keyword is required to separate the expression from the
template. The expression result may be parsed repeatedly by using multiple
templates,but the expression is not reevaluated.

VAR variable. The value of the specified variable is used as the input
string. When multiple templates are provided,each template uses the current
value of the variable.

This value may change if the variable is included as an assignment target in
any of the templates.

VERSION. The current configuation of the ARexx interpreter is supplied in
the form "ARexx version cpu mpu video freq". The version toekn is the
release level of the interpreter,formatted as V1.0. The cpu token indicates
the processor currently running the program,and will be one of the values
68000,68010,or 68020. The mpu token will be either NONE or 68881 depending
on whether a math coprocessor is available on the system. The video token
will indicate either NTSC or PAL,and the freq token gives the
clock(line)frequency as either 60HZ or 50 HZ.

Parsing is controlled by a template,which may consist of symbols,strings,
operators,and parentheses. During the parsing operation the input string is
split into substrings that are assigned to the variable symbols in the
template. The process continues until all of the variables in the template
have been assigned a value;if the input string is "used up",any remaining
variables are given null values.

Arexx 47 / 152

Templates are described in depth in Chapter 8,so only a simplified
description is presented here. The goal of the parsing operation is to
associate a "current" and "next" position with each variable symbol in the
template. The substring between these positions is then assigned as the
value to the variable. There are three basic methods used to determine the
value strings.

PARSING BY TOKENIZATION. When a variable in the template is followed
immediately by another variable,the value string is determined by breaking
the input string into words separated by blanks. Each word is assigned to a
variable in the template.

Values determined by tokenization will never have leading or trailing blanks.
Normally the last variable in the template receives the untokenized remainder
of the input string,since it is not followed by a symbol. A "placeholder"
symbol,signified by a period(.),may be used to force tokenization.
Placeholders behave like variables in the template except that they are never
actually assigned a value.

Example:

/* Numeric string is: "9 0 SCIENTIFIC" */
parse numberic digits fuzz form .
say digits /* =>9 */
say fuzz /* =>0 */
say from /*=> SCEIENTIFIC */

PARSING BY POSITION. If the fields in the input string have known positions,
value strings can be specified by absolute or relative positions. Relative
positions are indicated by a number preceded by a "+" or "-" operator. Each
positional marker updates the scan position in the string. The value
assigned to a variable is the string from the current position up to,but not
including, the next position in the string.

Example:

/* assume argument is "1234567890" */
parse arg 1 a 3 b +2 1 c
say a b c /* ==> 12 34 1234567890 */

PARSING WITH PATTERNS. Fields in the input string separated by specific
characters or strings can be parsed using a pattern,which is matched against
the input string. A pattern is specified in the template as a string
token,or alternatively as a symbol enclosed in parentheses. The position in
the parse string matched by the pattern determines the value strings. The
pattern is removed from the input string when a match is found;this is the
only parsing operation that modifies the input string.

Example:

check = ’one,two,three’
parse var check a ’,’ b ’,’ c
say a b c /* ==> one two three */

1.82 procedure

Arexx 48 / 152

Usage:PROCEDURE [EXPOSE variable [variable...]]
The PROCEDURE instruction is used within an internal function to create a new
symbol table. This protects the symbols defined in the caller’s environment
from being altered by the execution of the function. PROCEDURE is usually
the first statement within the function,although it is valid anywhere withing
the function body. It is an error to execute two PROCEDURE statements within
the function.

EXPOSING VARIABLES. The EXPOSE subkeyword provides a selective mechanism for
accessing the caller’s symbol table,and for passing global variables to a
function. The variables following the EXPOSE keyword are taken to refer to
symbols in the caller’s table. Any subsequent changes made to these
variables will be reflected in the caller’s environment.

The variables in the EXPOSE list may include stems or compound symbols,in
which case the ordering of the variables becomes significant. The EXPOSE
list is processed from left to right,and compound symbols are expanded based
on the values in effect in the new generation. For example,suppose that the
value of the symbol J in the previous gneration is 123,and that J is
unitialized in the new generation. Then PROCEDURE EXPOSE J A.J will expose J
and A.123,whereas PROCEDURE EXPOSE A.J J will expose A. J. and J. Exposing
a stem has the effect of exposing all possible compound symbols derived from
that stem.

Example:

fact: procedure /* a recursive function */
arg i
if i <=1

then return 1
else return i*fact(i-1)

1.83 pull

Usage:PULL [template] [,template...]
This is a shorthand form of the PARSE UPPER PULL instruction. It reads a
string from the input console,translates it to uppercase,and parses it using
the template. Multiple strings can be ready by supplying additional
templates. The instruction will read from the console even if no template is
given.

Templates are described briefly with the PARSE instruction and in greater
depth in Chapter 8.

Example:

pull first last. /* read names */

1.84 push

Usage: PUSH [expression]
The PUSH instruction is used to prepare a stream of data to be ready by a
command shell or other program. It appends a "newline" to the result of the

Arexx 49 / 152

expression and then stacks or "pushes" it into the STDIN stream. Stacked
lines are placed in the stream in "last-in, first-out" order,and are then
available to be ready just as though they had been entered interactively.
For example, after issuing the instructions

push line 1
push line 2
push line 3

the steam would be read in the order "line 3," "line 2" and "line 1."

There are several restrictions governing the use of the PUSH instruction and
its alter ego QUEUE. These instructions use a special I/O mechanism to
accomplish their task,and as a result can be used only with an interactive
(stream-model) I/O device like a console or pipe. The stream must be managed
by with a DOS handler that supports the special ACTION_STACK (for PUSH) or
ACTION_QUEUE (for QUEUE) command.

PUSH allows the STDIN stream to be used as a private scratchpad to prepare
data for subsequent processing. For example,several files could be
concatenated with delimiters between them by simply reading the input
files,PUSHing the lines into the stream,and inserting a delimiter where
required. Once the stacked lines are exhausted,the stream reverts to its
normal source of data.

Example:

/* Stack commands for compile and link*/
push "blink c.o+main.o library amiga.lib to myprog"
push "cc main"

1.85 queue

Usage:QUEUE [expression]
The QUEUE instruction is used to prepare a stream of data to be read by a
command shell or other program. It is very similar to the preceding PUSH
instruction,and differs only that the data lines are placed in the STDIN
stream in "first-in,first-out" order. In this case the instruction

queue line 1
queue line 2
queue line 3

would be read in the order "line 1," "line 2," and "line 3." The QUEUEd lines
always precede all interactivly-entered lines,and always follow any PUSHed
(stacked) lines.

The same restriction noted with the use of the PUSH instruction apply to the
QUEUE instruction. The queueing mechanism uses the ACTION_QUEUE command,so
the DOS handler associated with the STDIN stream must support this command.

In most cases the choice of whether to use PUSH or QUEUE is just a matter of
convenience or personal preference. Each of them provides a "scratch pad"
facility similar to that provided by an I/O pipe,but useful within one
program or task rather than just for interprocess communications.

Example:

Arexx 50 / 152

/* Queue commands for compile and link */
queue "cc main"
queue "blink c.o+main.o library amiga.lib to myprog"

1.86 return

RETURN is used to leave a function and return control to the point of the
previous function invocation. The evaluated expression is returned as the
function result. If an expression is not supplied,an error may result in the
caller’s environment. Functions called from within an expression must return
a result string,and will generate an error if no result is available.
Function invoked by the CALL instruction need not return a result.

A RETURN issued from the base environment of a program is not an error,and is
equivalent to an EXIT instruction. Refer to the EXIT instruction for a
description of how result strings are passed back to an external caller.
Example:

return 6*7 /*the answer */

1.87 say

Usage:SAY [expression]
The result of the evaluated expression is written to the output console,with
a "newline" character appended. If the expression is omitted,a null string
is sent to the console.

Example:

say ’The anwer is ’ value

1.88 select

Usage:SELECT
This instruction begins a group of instructions containing one or more WHEN
clauses and possibly a single OTHERWISE clause,each followed by a conditional
statement.

Only one of the conditional statements within the SELECT group will be
executed. Each WHEN statement is executed in succession until one
succeeds;if none succeeds,the OTHERWISE statement is executed. The SELECT
range must be terminated by an eventual END statement. Example:

select
when i=1 then say ’one’
when i=2 then say ’two’
otherwise say ’other’
end

Arexx 51 / 152

1.89 shell

Usage:SHELL [symbol | string] [expression]
The SHELL instruction is a synonym for the ADDRESS instruction.
Example:

shell edit /* set host to ’EDIT’ */

1.90 signal

Usage: SIGNAL {ON |OFF} condition
or: SIGNAL [VALUE] expression

There are two forms of the SIGNAL instruction. The first form illustrated
controls the state of the internal interrupt flags. Interrupts allow a
program to detect and retain control when certain errors occur,and are
discussed in Chapter 7. In this form SIGNAL must be followed by one of the
keywords ON or OFF and one of the condition keywords listed below. The
interrupt flag specified by the condition symbol is then set to the indicated
state. The valid signal conditions are:

BREAK_C A "control-C" break was detected.
BREAK_D A "control-D" break was detected.
BREAK_E A "control-E" break was detected.
BREAK_F A "control-F" break was detected.
ERROR A Host command returned a non-zero code.
HALT An external HALT request was detected.
IOERR An error was detected by the I/O system.
NOVALUE An uninitialized variable was used.
SYNTAX A syntax or execution error was detected.

The condition keywords are interpreted as labels to which control will
transferred if the selected condition occurs. For example,if the ERROR
interrupt is enabled and a command returns a non-zero code,the interpreter
will transfer control to the label ERROR:. The condition label must of
course be defined in the program;otherwise,an immediate SYNTAX error results
and the program exits.

In the second form of the instruction,the tokens following SIGNAL are
evaluated as an expression. An immediate interrupt is generated that
transfers control to the label specified by the expression result. The
instruction thus acts as a "computed goto."

INTERRUPTS. Whenever an interrupt occurs,all currently active control ranges
(IF,DO,SELECT,INTERPRET,or interactive TRACE) are dismantled before the
transfer of control. Thus,the transfer cannot be used to jump into the range
of a DO-loop or other control structure. Only the control structures in the
current environment are affected by a SIGNAL condition,so it is safe to
SIGNAL from within an internal function without affecting the state of the
caller’s environment.

SPECIAL VARIABLES. The special variable SIGL is set to the current line
number whenever a transfer of control occurs. The program can inspect SIGL
to determine which line was being executed before the transfer. If an ERROR
or SYNTAX condition causes an interrupt,the special variable RC is set to the

Arexx 52 / 152

error code that triggered the interrupt. For the ERROR condition,this code
is usually an error secerity level. The SYNTAX condition will always
indicate an ARexx error code. Examples:

signal on error /* enable interrupt */
signal off syntax /* disable SYNTAX */
signal start /* goto START */

1.91 then

Usage:THEN[;] [conditional statement]
The THEN instruction must be the next statement following an IF or WHEN
instruction,and is valid only in that context. It tests whether the
preceding expression evaluated to 1(True),in which case the conditional
statement following the THEN is performed. If the expression result was a
0(False),the conditional statement is skipped.

Example:

if i=j
then say ’equal’
else say ’not equal’

1.92 trace

Usage:TRACE [symbol|string|[[VALUE] expression]]
The TRACE instruction is used to set the internal tracing mode. If a symbol
or string is supplied,it is taken as a literal. Otherwise,the tokens
following the VALUE keyword are evaluated as an expression. The VALUE
keyword can be omitted if the expression doesn’t start with a symbol or
string token.

In either case the result string is converted to uppercase and checked first
for one of the "alphabetic" options. The valid alphabetic options are ALL,
COMMANDS,ERRORS,INTERMEDIATES,LABELS,RESULTS,and SCAN. These can be spelled
out in full or shortened to the initial character,and are described in
Chapter 7. If the result doesn’t match any of these options,the interpreter
attempts to convert it to an integer. A conversion failure here will be
reported as an error.

PREFIX CHARACTERS. Two special symbol characters may precede any of the
alphabetic keywords. The "?" character interactive tracing,and the "!"
character controls command inhibition. These characters act as "toggles" to
alternatively select and de-select the respective modes. Any number of
prefix characters may precede an alphabetic option. Interactive tracing and
command inhibition are described in Chapter 7.

NUMERIC OPTION. If the specified trace option is a negative whole number,it
is accepted as a trace suppression count. The suppression count is the
number of clauses(that would otherwise be traced)to be passed over before
resuming the tracing display. Suppression counts are ignored execept during
interactive tracing. Examples:

Arexx 53 / 152

trace ?r /* interactive RESULTS */
trace off
trace -20 /* skip 20 clauses */

1.93 upper

Usage:UPPER variable [variable...]
The values of the variables in the list are converted to uppercase. It is
not an error to include an uninitialized variable in the list,but it will be
trapped if the NOVALUE interrupt has been enabled.

The TRANSLATE() or UPPER() Built-In functions could also be used to convert
variables to uppercase,but the instruction form is more concise(and faster)
if several variables are being converted.

Example:

when=’Now is the time’
upper when
say when /* NOW IS THE TIME */

1.94 when

Usage:WHEN expression [THEN [;] [conditional statement]]
The WHEN instruction is similar to the IF instruction,but is valid only
within a SELECT range. Each WHEN expression is evaluated in turn and must
result in a boolean value. If the result is a 1,the conditional statement is
executed and control passes to the END statement that terminates the SELECT.
As in the case of the IF instruction,the THEN need not be part of the same
clause. Example:

select;
when i<j thn say ’less’
when i=j then say ’equal’
otherwise say ’greater’
end

1.95 unnamed.2

Syntactically,a command clause is just an expression that can’t be classified
as another type of clause. The actual structure of the command is dictated
by the external host to which it is intended,but in most cases will follow
the model of a name or letter followed by parameter data. Command names can
be given as either a symbol or a string. However,it is generally safer to
use a string for the name,since it can’t be assigned a value or be mistaken
for an instruction keyword. For example,the following might be commands for
a text editor:

JUMP current+10 /* advance to next */

Arexx 54 / 152

’insert’ newstring /* blast it in */
’TOP’ /* back to the top */

Since command clauses are expressions,they are fully evaluated before being
sent to the host. Any part of the final command string can be computed
within the program,so virtually any sort of command structure can be created.

The interpretation of the received commands depends entirely on the host
application. In the simplest case the command strings will correspond
exactly to commands that could be entered directly by a user. For
instance,positional control(up/down)commands for a text editor would probably
have identical interpretations whether issued by the user or from a program.
Other commands may be valid only when issued from a macro program;a command
to simulate a menu operation would probably not be entered by the user.

1.96 the host address

The destination for a command is determined by the current host address,which
is the name of the public message port managed by an external program. ARexx
maintains two implicit host addresses,a "current" and a "previous" value,as
part of the program’s storage environment. These values can be changed at
any time using the ADDRESS instruction(or its synonym,SHELL,)and the current
host address can be inspected with the ADDRESS()Built-In fuction. The
default host address string is "REXX",but this can be overridden when a
program is invoked. In particular,most host applications will supply the
name of their public port when they invoke a macro program,so that the macro
can automatically issue commands back to the host.

One special host address is recognized: the string COMMAND indicates that
the command should be issued directly to the underlying DOS. All other host
addresses are assumed to refer to a public message port. An attempt to send
a commmand to a non-existent message port will generate the syntax error
"Host environment not found."

Single commands can be sent to a specific host without disturbing the host
address settings. This is done using the ADDRESS instruction,as the
following example illustrates:

ADDRESS MYEDIT ’jump top’

This example would send the command "jump top" to an external host named
"MYEDIT."

It is important to note that you cannot send commands to a host application
without knowing the name of its public message port. Writing macro programs
to communicate with two or more hosts may require some clever programming to
determine whether both hosts are active and what their respective host
addresses are.

1.97 the command interface

Arexx 55 / 152

ARexx implements its command interface using the message-passing facilities
provided by the EXEC operating system. Each host application must provide a
public message port,the name of which is referred to as the host address.
ARexx programs issue commands by placing the command string in a message
packet and sending the packet to the host’s message port. The program
"sleeps" while the host processes the command,and awakens when the message
packet returns. The entire process can be regarded as a dialogue between the
host application and a macro program:the host initiates the dialogue by
invoking the macro,and the macro program replies with one or more command
strings. The commands that can be sent are not limited to simple text
strings,but might be address pointers or even bit-mapped images.

After it finishes processing a command,the host "replies" the message packet
with a return code that indicates the status of the command. This return
code is placed in the ARexx special variable RC so that it can be examined by
the program. A value of zero is assumed to mean that no errors
occurred,while positive values usually indicate progressively more severe
error conditions. The return code allows the macro program to determine
whether the command succeeded and to take action if it failed,so it is
important for each applictions program to document the meanings of the return
codes for its commands.

1.98 using commands in macro programs

ARexx can be used to write programs for any host application that includes a
suitable command interface. Some applications programs are designed with an
embedded macro language,and may include many predefined macro commands. With
a well-designed macro language interface the user will be usually unaware of
whether a given action is implemented as a primitive operations or as a macro
program.

The starting point in designing a macro program is to examine the commands
that would be required to perform it manually. The documentation for the
host application program should then describe the possible return codes for
each command;these codes can be used to determine whether the operation
performed by the command was successful. Check also for "shortcut" commands
that may be available only to macro programs;some applications programs may
include very powerful functions that were implemented specifically for use in
macro programs.

1.99 using arexx with command shells

Although ARexx was designed to work most effectively with programs that
support its specific command interface,it can be used with any "command
shell" program that uses standards I/O mechanisms to obtain its input stream.
There are several ways to use ARexx to prepare a stream of commands for such
program.

One obvious technique is to create an actual command file on the "RAM:" disk
and then pass it directly to the command shell. For example,you could open a
new CLI window to run a standard "execute" script using the following short

Arexx 56 / 152

program:

/* Launch a new CLI */
address command
conwindow = "CON:0/0/640/100/NewOne"

/* create a command file on the fly */
call open out,"ram:$$temp",write
call writeln out,’echo "this is a test"’
call close out

/* open the new CLI window */
’newcli’ conwindow "ram:$$temp"’
exit

Since no disk accesses are required,this method is actually fairly fast,if
not very elegant.

Another alternative is to use the command stacking facility provided by the
PUSH and QUEUE instructions. These instructions allow an ARexx program to
stack an arbitrary stream of commands and data for the command shell or other
program to read. Any set of commands that could be "typed ahead" at a
command prompt can be prepared in this fashion. After the ARexx program
exits,the next program that uses the input stream will read the prepared
commands and can process them in the normal fashion.

1.100 command inhibition

Sometimes it is necessary to write and test macro programs that issue
potentially destructive commands. For instance,a program to find and delete
unneeded files would be difficult to test safely,since it might accidentally
delete the wrong files and would require a continual source of new files for
testing.

To simply the development and testing of such programs,ARexx provides a
special tracing mode called command inhibition that suppresses host commands.
While in command inhibition mode,command processing proceeds normally except
that the command is not actually issued and the variable RC is set to 0.
This allows the program logic to be verified before any commands are actually
sent to the external program. Chapter 7 has further information on this
facility.

1.101 concept

The basic concept of a function is a program or group of statements that will
be executed whenever the function name appears in a certain context.Functions
are an important building block of most computer languages in that they allow
modular programming -- the ability to build a large program from a series of
smaller,more easily developed modules. In ARexx a function may be defined as
part of(internal to)a program,as part of a library,or as a separate external
program.

Arexx 57 / 152

1.102 syntax and search order

Function calls in an expression are defined syntactically as a symbol or
string followed immediately by an open parenthesis. The symbol or
string(taken an a literal)specifies the function name,and the open
parenthesis begins the argument list. Between the opening and eventual
closing parentheses are zero or more argument expressions,separated by
commas,that supply the data being passed to the function. For example,

CENTER(’title",20)
ADDRESS()
’AllocMem’(256*4,1)

are all valid function calls. Each argument expression is evaluated in turn
and the resulting strings are passed as the argument list to the function.
There is no limit to the number of arguments that may be passed to an
internal function,but calls to Built-In or external functions are limited to
a maximum of 15 arguments. Note that each argument expression,while ofter
just a single literal value,can include arithmetic or string operations or
even other function calls. Argument expressions are evaluated from left to
right.

Functions can also be invoked using the CALL instruction. The syntax of this
form is slightly different,and is described in Chapter 4. The CALL
instruction can be used to invoke a function that may not return a value.

1.103 search order

Function linkages in ARexx are established dynamically at the time of the
function call. A specific search order is followed until a function matching
the name symbol or string is found. If the specified function cannot be
located, an error is generated and the expression evaluation is terminated.
The full search order is:

1. Internal Functions. The program source is examined for a label that
matches the function name. If a match is found,a new storage environment is
created and control is transferred to the label.

2. Built-In Functions. The Build-In function library is searched for the
specified name. All of these functions are defined by uppercase names,and
the library has been specially organized to make the search as efficient as
possible.

3. Function Libraries and Function Hosts. The available function libraries
and function hosts are maintained in a prioritized list,which is searched
starting at the highest priority until the requested function is found or the
end of the list is reached. Each function library is opened and called at a
special entry point to determine whether it contains a function matching the
given name. Function hosts are called using a message-passing protocol
similar to that used for commands,and may be used as gateways for remote
procedure calls to other machines in a network.

4. External ARexx Programs. The final search step is to check for an
external ARexx program file by sending an invocation message to the ARexx

Arexx 58 / 152

resident process. The search always begins in the current directory,and
follows the same search path as the original ARexx program invocation. The
name matching process is not case-sensitive.

Note that the function name-matching procedure may be case-sensitive for some
of the search steps but not for others. The matching procedure used in a
function library or function host is left to the discretion of the
applications designer. Functions defined with mixed-case names must be
called using a string token,since symbol names are always translated to
uppercase.

The full search order is followed whenever the function name is defined by a
symbol token. However,the search for internal functions is bypassed if the
name is specified by a string token. This allows internal functions to usurp
the names of external functions,as in the following example:

CENTER: /* internal "CENTER" */
arg string,length /* get arguments */
length = min(length,60) /* compute length */
return ’CENTER’(string,length)

Here the Built-In fuction CENTER()has been replaced by an internal function
of the same name,which calls the original function after modifying the length
argument.

1.104 internal functions

The interpreter creates a new storage environment when an internal function
is called,so that the previous(caller’s)environment is preserved. The new
environment inherits the values from its predecessor,but subsequent changes
to the environment variables do not affect the previous environment. The
specific values that are preserved are:

The current and previous host addresses,
The NUMERIC DIGITS,FUZZ,and FORM settings,
The trace option,inhibit flag,and interace flag,
The state of the interrupt flags defined by the SIGNAL instruction,and
The current prompt string as set by the OPTIONS PROMPT instruction.

The new environment does not automatically get a new symbol table,so
initially all of the variables in the previous environment are available to
the called function. The PROCEDURE instruction can be used to create a new
symbol table and thereby protect the caller’s symbol values.

Execution of the internal function proceeds until a RETURN instruction is
executed. At this point the new environment is dismantled and control
resumes at the point of the function call. The expression supplied with the
RETURN instruction is evaluated and passed back to the caller as the fuction
result.

1.105 built-in functions

Arexx 59 / 152

ARexx provides a substantial library of predefined functions as part of the
language system. These functions are always available and have been
optimized to work with the internal data structures. In general the Built-In
functions execute much faster than an equivalent interpreted function,so
their usage is strongly recommended.

The Built-In Function Library is not user-extensible,but additional functions
will be included in later releases.

1.106 external function libraries

External function libraries provide a mechanism with which users and
applications developers can extend the functionality of ARexx. A function
library is a collection of one or more functions together with a "query"
entry point that serves to match a name string with the appropriate function.
External function libraries are supported as standard Amiga shared libraries,
and may be either memory or disk-resident. Disk-resident libraries are
loaded and opened as needed.

The ARexx resident process maintains a list,called the Library List,of the
currently available function libraries and function hosts. Applications
programs can add or remove function libraries as required. The Library List
is maintained as a priority-sorted queue,and entries can be added at an
appropriate priority to control the function name resolution. Libraries with
higher priorities are searched first;within a given priority level,those
libraries added first are searched first.

During the search process the ARexx interpreter opens each library and calls
its "query" entry point. The query function must then check to see whether
the requested function name is in the library. If not,it returns a "function
not found" error code and the search continues with the next library in the
list. Function libraries are always closed after being checked so that the
operatiing system can reclaim the memory space if required. Once the
requested function has been found,it is called with the arguments passed by
the interpreter,and must return an error code and a result string.

The ARexx language system includes an external function library in a file
called "rexxsupport.library". It contains a number of Amiga-specific
functions and is described in Appendix D. Chapter 10 provides information on
designing and implementing function libraries.

1.107 function hosts

Function hosts are called by sending a function invocation message packet to
the public message port identified by the host’s name. No constraints are
imposed on the iternal design of the host except that it must eventually
return the invocation message with an appropriate return code and result
string. The function call may result in a new program being loaded and
run,or might even be sent to a network handler as a remote procedure call.

The available function hosts,along with the function libraries,are contained

Arexx 60 / 152

in the Library List maintained by the resident process. This list provides a
general mechanism for resolving function names in a priority-controlled
manner.

The ARexx resident process is an example of a function host. It is added to
the Library List at a nominal priority of -60 when the resident process is
started, using the same name ("REXX")that is used for command invocations.
When it receives a function invocation packet,it searches for an external
file matching the function name,just as it would for a command invocation of
the same name. In particular,the search begins with the current directory
and process is not case-sensitive,but is affected by the presence of explicit
directory specifications or file extensions in the name string. The rules
governing the search for external programs are covered in Chapter 9.

External programs are always run as a separate process in the Amiga’s
multitasking system. The calling program "sleeps" until the called function
finishes and the message packet returns. The result string and error code
are returned in the packet.

1.108 the built-in function library

This section of the chapter is devoted to descriptions of the individual
Built In functions,which are listed alphabetically. Many of the functions
have optional as well as required arguments. The optional arguments are
shown in brackets,and generally have a default value that is used if the
argument is omitted.

MAXIMUM ARGUMENTS. While internal functions can be called with any number of
arguments,the Built-In functions(and external functions as well)are limited
to a maximum of 15 arguments.

PAD AND OPTION CHARACTERS. For functions that accept a "pad" character
argument,only the first character of the argument string is significant. If
a null string is supplied,the default padding character(usually a blank)will
be used. Similarly,where an option keyword is specified as an argument,only
the first character is significant. Option keywords may be given in
uppercase or lowercase.

I/O SUPPORT FUNCTIONS. ARexx provides functions for creating and
manipulating external DOS files. The functions available at the present time
are OPEN(), CLOSE(),READCH(),READLN(),WRITECH(),WRITELN(),EOF(),SEEK(),and
EXISTS(). Files are referenced by a "logical name," a case-sensitive name
that is assigned to a file when it is first opened.

There is no limit to the number of files that may be open simultaneously,and
all open files are closed automatically when the program exits.

BIT-MANIPULATION FUNCTIONS.
The functions BITCHG(),BITCLR(),BITCOMP(),BITSET(), and BITTST() are provided
to implement extended bit-testing on character strings. These functions
differ from similar string-manipulation functions in that the elementary unit
of comparison is the bit rather than the byte. Bit number are defined such
that bit 0 is the low-order bit of the rightmost byte of the string.

Arexx 61 / 152

1.109 abbrev()

Usage:ABBREV(string1,string2,[length]
Returns a boolean value that indicates whether string2 is an abbreviation of
string1 with length greater than or equal to the specified length argument.
The default length is 0, so the null string is an acceptable abbreviation.
Example:

say abbrev(’fullname’,’ful’) ==>1
say abbrev(’almost’,’alm’,4) ==>0
say abbrev(’any’,’’) ==>1

1.110 abs()

Usage:ABS(number)
Returns the absolute value of the number argument,which must be numeric.
Examples:

say abs(-5.35) ==>5.35
say abs(10) ==>10

1.111 addlib()

Usage ADDLIB(name,priority,[offset,version])
Adds a function library or a function host to the Library List maintained by
the resident process. The name argument specifies either the name of a
function library or the public message port associated with a function host.
The name is case-sensitive,and any libraries thus declared should reside in
the system LIBS: directory. The priority argument specifies the search
priority and must be an integer between 100 and -100,inclusive. The offset
and version arguments apply only to libraries. The offset is the integer
offset to the library’s "query" entry point,and the version is an integer
specifying the minimum acceptable release level of the library.

The function returns a boolean result that indicates whether the operation
was successful. Note that if a library is specified,it is not actually
opened at this time;similarly,no check is performed as to whether a specified
function host port has been opened yet. Example:

say addlib("rexxsupport.library",0,-30,0)==>1
call addlib "EtherNet",-20 /* a gateway */

1.112 address()

Usage:ADDRESS()
Returns the current host address string. The host address is the message
port to which commands will be sent. The SHOW() function can be used to
check whether the required external host is actually available.
See Also:

Arexx 62 / 152

SHOW()
Example:

say address() ==>REXX

1.113 arg()

Usage:ARG([number],[’Exists’ | ’Omitted’])
ARG()returns the number of arguments supplied to the current environment. If
the number parameter alone is supplied,the corresponding argument string is
returned. If a number and one of the keywords Exists or Omitted is given,the
boolean return indicates the status of the corresponding argument. Note that
the existence or omission test does not indicate whether the string has a
null value,but only whether a string was supplied. Examples:

/* Assume arguments were: (’one,,10) */
say arg() ==>3
say arg(1) ==>one
say arg(2,’0’) ==>1

1.114 b2c()

Usage:B2C(string)
Converts a string of binary digits(0,1) into the corresponding (packed)
character representation. The conversion is the same as though the argument
string had been specified as a literal binary string (e.g. ’1010’B). Blanks
are permitted in the string,but only at byte boundaries. This function is
particularly useful for creating strings that are to be used as bit masks.

See also:
X2C()
Examples:

say b2c(’00110011’) ==>3
say b2c(’01100001’) ==>a

1.115 bitand()

Usage:BITAND(string1,string2,[pad])
The argument strings are logically ANDed together, with the length of the
result being the longer of the two operand strings. If a pad character is
supplied,the shorter string is padded on the right;otherwise,the operation
terminates at the end of the shorter string and the remainder of the longer
string is appended to the result. Example:

bitand(’0313’x,’FFF0’x) ==>’0310’x

Arexx 63 / 152

1.116 bitchg()

Usage:BITCHG(string,bit)
Changes the state of the specified bit in the argument string. Bit numbers
are defined such that bit 0 is the low-order bit of the rightmost byte of the
string. Example:

bitchg(’0313’x,4) ==>’0303’x @endnode

1.117 bitclr()

Usage:BITCLR(string,bit)
Clears(sets to zero)the specified bit in the argument string. Bit numbers
are defined such that bit 0 is the low-order bit of the rightmost byte of the
string. Example:

bitclr(’0313’x,4) ==>’0303’x @endnode

1.118 bitcomp()

Usage:BITCOMP(string1,string2,[pad])
Compares the argument strings bit-by-bit,starting at bit number 0. The
returned value is the bit number of the first bit in which the strings
differ, or -1 if the strings are identical. Examples:

bitcomp(’7F’x,’FF’x) ==>7
bitcomp(’FF’x,’FF’x) ==>-1

1.119 bitor()

Usage:BITOR(string1,string2,[pad])
The argument strings are logically ORed together,with the length of the
result being the longer of the two operand strings. If a pad character is
supplied,the shorter string is padded on the right;otherwise,the operation
terminates at the end of the shorter string and the remainder of the longer
string is appended to the result. Example:

bitor(’0313’x,’003F’x) ==>’033F’x

1.120 bitset()

Usage:BITSET(string,bit)
Sets the specified bit in the argument string is 1. Bit numbers are defined
such that bit 0 is the low-order bit of the rightmost byte of the string.
Example:

bitset(’0313’x,2) ==>’0317’x

Arexx 64 / 152

1.121 bittst()

Usage:BITTST(string,bit)
The boolean return indicates the state of the specified bit in the argument
string.

Bit numbers are defined such that bit 0 is the low-order bit of the rightmost
byte to the string. Example:

bittst(’0313’x,4) ==>1

1.122 bitxor()

Usage:BITAND(string1,string2,[pad])
The argument strings are logically exclusively-ORed together,with the length
of the result being the longer of the two operand strings. If a pad
character is supplied,the shorter string is padded on the right;otherwise,the
operation terminates at the end of the shorter string and the remainder of
the longer string is appended to the result. Example:

bitxor(’0313’x,’001F’x) ==>’030C’x

1.123 c2b()

Usage:C2B(string)
Converts the character string into the equivalent string of binary digits.
See Also:

C2X()
Example:

say c2b(’abc’) ==>011000010110001001100011

1.124 c2d()

Usage:C2D(string,[n])
Converts the string argument from its character representation to the
corresponding decimal number,expressed as ASCII digits(0-9).If n is supplied,
the character string is considered to be a number expressed in n bytes. The
string is truncated or padded with nulls on the left as required,and the sign
bit is extended for the conversion. Examples:

say c2d(’0020’x) ==>32
say c2d(’FFFF’) ==>1
say c2d(’FF0100’,x,2) ==>256

1.125 c2x()

Usage:C2X(string)
Converts the string argument from its character representation to the
corresponding hexadecimal number,expressed as the ACSII characters 0-9 and
A-F.

Arexx 65 / 152

See Also:
C2B()
Example:

say c2x(’abc’) ==>616263

1.126 center() or centre()

Usage:CENTER(string,length,[pad])or CENTRE(string,length,[pad])
Centers the string argument in a string with the specified length. If the
length is longer than that of the string, pad characters or blanks are added
as necessary.

Examples:
say center(’abc’,6) ==>’ abc ’
say center(’abc’,6,’+’) ==>’+abc++’
say center(’123456’,3) ==>’234’

1.127 close()

Usage:CLOSE(file)
Closes the file specified by the given logical name. The returned value is a
boolean success flag,and will be 1 unless the specified file was not open.
Example:

say close(’input’) ==>1

1.128 compress()

Usage:COMPRESS(string,[list])
If the list argument is omitted,the function removes leading,trailing,or
embedded blank characters from the string argument. If the optional list is
supplied,it specifies the characters to be removed from the string.
Examples:

say compress (’ why not ’) ==>whynot
say compress (’++12-34-+’,’+-’) ==>1234

1.129 compare()

Usage:COMPARE(string1,string2,[pad])
Compares two strings and returns the index of the first position in which
they differ,or 0 if the strings are identical. The shorter string is padded
as required using the supplied character or blanks. Examples:

say compare(’abcde’,’abcce’) ==>4
say compare(’abcde’,abcde’) ==>0
say compare(’abc++’,’abc+-’,’+’) ==>5

Arexx 66 / 152

1.130 copies()

Usage:COPIES(string,number)
Creates a new string by concatenating the specified number of copies of the
original. The number argument may be zero,in which case the null string is
returned.

Example:
say copies(’abc’,3) ==>abcabcabc

1.131 d2c()

Usage:D2C(number)
Creates a string whose value is the binary(packed)representation of the given
decimal number.

Example1:
d2c(31) = $1f in hex

Example2:
pos = d2c(config_addr+5900) = pos equals hex of variable + 5900

1.132 d2x()

Usage:D2X(number)
Creates a string whose value is the binary(packed)representation of the given
decimal number in ascii hexidecimal form.
Example:

say d2x(31) ==> 1f

1.133 datatype()

Usage:DATATYPE(string,[option])
If the option parameter is not specified,DATATYPE()tests whether the string
parameter is a valid number and returns either NUM or CHAR. If an option
keyword is given, the boolean return indicates whether the string satisfied
the requested test. The following option keywords are recognized:

Table 6.1 DATATYPE()Options

KEYWORD CHARACTERS ACCEPTED
Alphanumeric Alphabetics (A-Z,a-z)

or Numerics (0-9)
Binary Binary Digits String
Lowercase Lowercase Alphabetics (a-z)
Mixed Mixed Upper/Lowercase
Numeric Valid Numbers
Symbol Valid REXX Symbols
Upper Uppercase Alphabetics (A-Z)
Whole Integer Numbers

Arexx 67 / 152

X Hex Digits String
Examples:

say datatype(’123’) ==>NUM
say datatype(’1a f2’,’x’) ==>1
say datatype(’aBcde’,’L’) ==>0

1.134 delstr()

Usage:DELSTR(string,n,[length])
Deletes the substring of the string argument beginning with the nth character
for the specified length in characters. The default length is the remaining
length of the string. Example:

say delstr(’123456’,2,3) ==>156

1.135 delword()

Usage:DELWORD(string,n,[length])
Deletes the substring of the string argument beginning with the nth word for
the specified length in words. The default length is the remaining length of
the string.The deleted string includes any trailing blanks following the last
word. Examples:

say delword(’Tell me a story’,2,2)==>’Tell story’
say delword(’one two three’,3) ==>’one two ’

1.136 eof()

Usage:EOF(file)
Checks the specified logical file name and returns the boolean value 1(True)
if the end-of-file has been reached, and 0(False)otherwise. Example:

say eof(infile) ==>1

1.137 errortext()

Usage:ERRORTEXT(n)
Returns the error message associated with the specified ARexx code. The null
string is returned if the number is not a valid error code. Example:

say errortext(41) ==>Invalid expression

1.138 exists()

Usage:EXISTS(filename)
Tests whether an external file of the given filename exists. The name string
may include device and directory specifications. Example:

say exists(’df0:c/ed’) ==>1

Arexx 68 / 152

1.139 export()

Usage:EXPORT(address,[string],[length],[pad])
Copies data from the (optional) string into a previously-allocated memory
area, which must be specified as a 4-byte address. The length parameter
specifies the maximum number of characters to be copied; the default is the
length of the string. If the specified length is longer than the string,the
remaining area is filled with the pad character or nulls(’00’x). The
returned value is the number of characters copied.

Caution is advised in using this function. Any area of memory can be
overwritten,possibly causing a system crash. Task switching is forbidden
while the copy is being done,so system performance may be degraded if long
strings are copied.
See Also:

IMPORT()
,
STORAGE()
Example:

count = export(’0004 0000’x,’The answer’)
call export(’00070010’x,(variable)) inserts value in variable at $70000

1.140 freespace()

Usage:FREESPACE(address,length)
Returns a block of memory of the given length to the interpreter’s internal
pool. The address argument must be a 4-byte string obtained by a prior call
to GETSPACE(),the internal allocator. It is not always necessary to release
internally-allocated memory,since it will be released to the system when the
program terminates. However,if a very large block has been
allocated,returning it to the pool may avoid memory space problems. The
return value is a boolean success flag.
See Also:

GETSPACE()
Example:

say freespace(’00042000’x,32) ==>1

1.141 getclip()

Usage:GETCLIP(name)
Searches the Clip List for an entry matching the supplied name parameter,and
returns the associated value string. The name-matching is case-sensitive,and
the null string is returned if the name cannot be found. The usage and
maintenance of Clip List entries is described in the Chapter 9.
See Also:

SETCLIP()
Example:

/* Assume ’numbers’ contains ’PI=3.14159’ */
say getclip(’numbers’) ==>PI=3.14159

Arexx 69 / 152

1.142 getspace()

Usage:GETSPACE(length)
Allocates a block of memory of the specified length from the interpreter’s
internal pool. The returned value is the 4-byte address of the allocated
block, which is not cleared or otherwise initialized. Internal memory is
automatically returned to the system when the ARexx program terminates,so
this function should not be used to allocate memory for use by external
programs. The Support Library(described in Appendix D)includes the function
ALLOCMEM()which to allocate memory from the system free list.
See Also:

FREESPACE()
Example:

say c2x(getspace(32)) ==>’0003BF40’x

1.143 hash()

Usage:HASH(string)
Returns the hash attribute of a string as a decimal number,and updates the
internal hash value of the string.

Example:
say hash(’1’) ==>49

1.144 import()

Usage:IMPORT(address,[length])
Creates a string by copying data from the specified 4-byte address. If the
length parameter is not supplied,the copy terminates when a null byte is
found.
See Also:

EXPORT()
Example:

extval = import(’0004 0000’x,8)

1.145 index()

Usage:INDEX(string,pattern,[start])
Searches for the first occurrence of the pattern argument in the string
argument,beginning at the specified start position. The default start
position is 1. The returned value is the index of the matched pattern,or 0
if the pattern was not found.
Examples:

say index("123456","23") ==>2
say index("123456","77") ==>0
say index("123123","23",3) ==>5

Arexx 70 / 152

1.146 insert()

Usage:INSERT(new,old,[start],[length],[pad])
Inserts the new string into the old string after the specified start
position. The default starting position is 0. The new string is truncated
or padded to the specified length as required,using the supplied pad
character or blanks. If the start position is beyond the end of the old
string,the old string is padded on the right.
Examples:

say insert(’ab,’12345’) ==>ab12345
say insert(’123’,’++’,3,5,’-’) ==>++-123--

1.147 lastpos()

Usage:LASTPOS(pattern,string,[start])
Searches backwards for the first occurrence of the pattern argument in the
string argument,beginning at the specified start position. The default
starting position is the end of the string. The returned value is the index
of the matched pattern,or 0 if the pattern was not found.
Examples:

say lastpos("123234","2") ==>4
say lastpos("123234","5") ==>0
say lastpos("123234","2",3) ==>2

1.148 left()

Usage:LEFT(string,length,[pad])
Returns the leftmost substring in the given string argument with the
specified length. If the substring is shorter than the requested length,it
is padded on the left with the supplied pad character or blanks.
Examples:

say left(’123456’,3) ==>123
say left(’123456’,8,’+’) ==>123456++

1.149 length()

Usage:LENGTH(string)
Returns the length of the string.
Example:

say length(’three’) ==>5

1.150 max()

Usage:MAX(number,number[,number,...])
Returns the maximum of the supplied arguments,all of which must be numeric.
At least two parameters must be supplied.
Example:

say max(2.1,3,-1) ==>3

Arexx 71 / 152

1.151 min()

Usage:MIN(number,number[,number,...])
Returns the minimum of the supplied arguments,all of which must be numeric.
At least two parameters must be supplied.
Example:

say min(2.1,3,-1) ==>-1

1.152 open()

Usage:OPEN(file,filename,[’Append’ | ’Read’ | ’Write’])
Opens an external file for the specified operation. The file argument
defines the logical name by which the file will be referenced. The filename
is the external name of the file,and may include device and directory
specifications. The function returns a boolean value that indicates whether
the operation was successful. There is no limit to the number of files that
can be open simultaneusly,and all open files are closed automatically when
the program exits.
See Also:

CLOSE()
,
READCH()
,
READLN()
,
WRITECH()
,
WRITELN()
Examples:

say open(’MyCon’,’CON:160/50/320/100/MyCon/cds’) ==>1
say open(’outfile’,’ram:temp’,’W’) ==>1

1.153 overlay()

Usage:OVERLAY(new,old,[start],[length],[pad])
Overlays the new string onto the old string beginning at the specified start
position,which must be positive. The default starting position is 1. The
new string is truncated or padded to the specified length as required,using
the supplied pad character or blanks. If the start position is beyond the
end of the old string,the old string is padded on the right.
Examples:

say overlay(’bb,’abcd’) ==>bbcd
say overlay(’4’,’123’,5,5,’-’) ==>123--4----

1.154 pos()

Usage:POS(pattern,string,[start])
Searches for the first occurrence of the pattern argument in the string
argument,beginning at the position specified by the start argument. The

Arexx 72 / 152

default starting position is 1. The returned value is the index of the
matched string,or 0 if the pattern wasn’t found.
Examples:

say pos(’23’,’123234’) ==>2
say pos(’77’,’123234’) ==>0
say pos(’23’,’123234’,3) ==>4

1.155 pragma()

Usage:PRAGMA(option,[value])
This function allows a program to change various attributes relating to the
system environment within which the program executes. The option argument is
a keyword that specifies an environmental attribute;the currently implemented
options are Directory and Priority. The value argument supplies the new
attribute value to be installed. The value returned by the function depends
on the attribute selected. Some attributes return the previous value
installed,while others may simply set a boolean success flag. The currently
defined option keywords are listed below.

DIRECTORY. Specifies a new "current" directory. The current directory is
used as the "root" for filenames that do not explicitly include a device
specification. The return value is a boolean success flag.

PRIORITY. Specifies a new task priority. The priority value must be an
integer in the range -128 to 127,but the practical range is much more
limited. ARexx programs should never be run at a priority higher than that
of the resident process,which currently runs at priority 4. The returned
value is the previous priority level.

Examples:
say pragma(’priority’,-5) ==>0
call pragma ’Directory’,’df0:system’

1.156 random()

Usage:RANDOM([min],[max],[seed])
Returns a pseudorandom integer in the interval specified by the min and max
arguments. The default minimum value is 0 and the default maximum value is
999. The interval max-min must be less than or equal to 1000. If a greater
range of random integers is required,the values from the RANDU()function can
be suitable scaled and translated.

The seed argument can be supplied to initialize the internal state of the
random number generator.
See Also:

RANDU()
Example:

thisroll = random(1,6) /* might be 1 */
nextroll = random(1,6) /* snake eyes? */

Arexx 73 / 152

1.157 randu()

Usage:RANDU([seed])
Returns a uniformly-distributed pseudorandom number between 0 and 1. The
number of digits of precision in the result is always equal to the current
Numeric Digits setting. With the choice of suitable scaling and translation
values, RANDU()can be used to generate pseudorandom numbers on an arbitrary
interval.

The optional seed argument is used to initialize the internal state of the
random number generator.
See Also:

RANDOM()
Example:

firsttry = randu() /* 0.371902021? */
numeric digits 3
tryagain = randu() /* 0.873? */

1.158 readch()

Usage:READCH(file,length)
Reads the specified number of characters from the given logical file into a
string. The length of the returned string is the actual number of characters
read,and may be less than the requested length if,for example,the end-of-file
was reached.
See Also:

READLN()
Example:

instring = readch(’input’,10)

1.159 readln()

Usage:READLN(file)
Reads characters from the given logical file into a string until a "newline"
character is found. The returned string does not include the "newline".
See Also:

READCH()
Examples:

instring = readln(’MyFile’)

1.160 remlib()

Usage:REMLIB(name)
Removes an entry with the given name from the Library List maintained by the
resident process. The boolean return is 1 if the entry was found and
successfully removed. Note that this function does not make a distinction
between function libraries and function hosts,but simply removes a named
entry.
See Also:

Arexx 74 / 152

ADDLIB()
Example:

say remlib(’MyLibrary.library’)==>1

1.161 reverse()

Usage:REVERSE(string)
Reverses the sequence of characters in the string.
Example:

say reverse(’?ton yhw’) ==>why not?

1.162 right()

Usage:RIGHT(string,length,[pad])
Returns the rightmost substring in the given string argument with the
specified length. If the substring is shorter than the requested length,it
is padded on the left with the supplied pad character or blanks.
Examples:

say right(’123456’,4) ==>3456
say right(’123456’,8,’+’) ==>++123456

1.163 seek()

Usage:SEEK(file,offset,[’Begin’ | ’Current’ | ’End’])
Moves to a new position in the given logical file,specified as an offset from
an anchor position. The default anchor is Current. The returned value is
the new position relative to the start of the file.
Examples:

say seek(’input’,10,’B’) ==>10
say seek(’input’,O,’E’) ==>356 /* file length */

1.164 setclip()

Usage:SETCLIP(name,[value])
Adds a name-value pair to the Clip List maintained by the resident process.
If an entry of the same name already exists,its value is updated to the
supplied value string. Entries may be removed by specifying a null value.
The function returns a boolean value that indicates whether the operation was
successful.
Examples:

say setclip(’path’,’df0:s’) ==>1
say setclip(’path’) ==>1

Arexx 75 / 152

1.165 show()

Usage:SHOW(option,[name],[pad])
Returns the names in the resource list specified by the option argument,or
tests to see whether an entry with the specified name is available. The
currently implemented options keywords are Clip,Files,Libraries,and Ports,
which are described below.

Clip. Examines the names in the Clip List.
Files. Examines the names of the currently open logical file names.
Libraries. Examines the names in the Library List,which are either function
libraries or function hosts.
Ports. Examine the names in the system Ports List.

If the name argument is omitted,the function returns a string with the
resource names separated by a blank space or the pad character,if one was
supplied. If the name argument is given,the returned boolean value indicates
whether the name was found in the resource list. The name entries are
case-sensitive.

1.166 sign()

Usage:SIGN(number)
Returns 1 if the number argument is positive or zero,and -1 if number is
negative. The argument must be numeric.
Examples:

say sign(12) ==>1
say sign(-33) ==>-1

1.167 space()

Usage:SPACE(string,n,[pad])
Reformats the string argument so that there are n spaces(blank characters)
between each pair of words. If the pad character is specified,it is used
instead of blanks as the separator character. Specifying n as 0 will remove
all blanks from the string.
Examples:

say space(’Now is the time’,3) ==>’Now is the time’
say space(’Now is the time’,0) ==>’Nowisthetime’
say space(’1 2 3’,1,’+’) ==>’1+2+3’

1.168 storage()

Usage:STORAGE([address],[string],[length],[pad])
Calling STORAGE()with no arguments returns the available system memory. If
the address argument is given,it must be a 4-byte string,and the function
copies data from the(optional)string into the indicated memory area. The
length parameter specifies the maximum number of bytes to be copied,and
defaults to the length of the string. If the specified length is longer than

Arexx 76 / 152

the string,the remaining area is filled with the pad character or
nulls(’00’x.)

The returned value is the previous contents of the memory area. This can be
used in a subsequent call to restore the original contents.

Caution is advised in using this function. Any area of memory can be
overwritten,possibly causing a system crash. Task switching is forbidden
while the copy is being done,so system performance may be degraded if long
strings are copied.
See Also:

EXPORT()
Examples:

say storage() ==>248400
oldval = storage(’0004 000’x,’The answer’)
call storage ’0004 0000’x,,32,’+’

1.169 strip()

Usage:STRIP(string,[{’B’ | ’L’ | ’T’}],[pad])
If neither of the optional parameters is supplied,the function removes both
leading and trailing blanks from the string argument. The second argument
specifies whether Leading,Trailing,or Both(leading and trailing)characters
are to be removed. The optional pad(or unpad,perhaps)argument selects the
character to be removed.
Examples:

say strip(’ say what? ’) ==>’say what?’
say strip(’ say what? ’,’L’) ==>’say what? ’
say strip(’++123+++’,’B’,’+’) ==>’123’

1.170 substr()

Usage:SUBSTR(string,start,[length],[pad])
Returns the substring of the string argument beginning at the specified start
position for the specified length. The starting position must be
positive,and the default length is the remaining length of the string. If
the substring is shorter than the requested length,it is padded on the left
with the blanks or the specified pad character.
Examples:

say substr(’23456’,4,2) ==>45
say substr(’myname’,3,6,’=’) ==>name==

1.171 subword()

Usage:SUBWORD(string,n,[length])
Returns the substring of the string argument beginning with the nth word for
the specified length in words. The default length is the remaining length of
the string. The returned string will never have leading or trailing blanks.
Example:

say subword(’Now is the time ’,2,2) ==>is the

Arexx 77 / 152

1.172 symbol()

Usage:SYMBOL(name)
Tests whether the name argument is a valid REXX symbol. If the name is not a
valid symbol,the function returns the string BAD. Otherwise,the returned
string is LIT if the symbol is uninitialized and VAR if it has been assigned
a value.
Examples:

say symbol(’J’) ==>VAR
say symbol(’x’) ==>LIT
say symbol(’++’) -->BAD

1.173 time()

Usage:TIME(option)
Returns the current system time or controls the internal elapsed time
counter. The valid option keywords are listed below.

Table 6.2 TIME()Options
OPTION KEYWORD DESCRIPTION
Elapsed Elapsed time in seconds.
Hours Current time in hours since midnight
Minutes Current time in minutes since midnight
Reset Reset the elapsed time clock
Seconds Current time in seconds since midnight

If no option is specified,the function returns the current system time in the
form HH:MM:SS.
Examples:

/* Suppose that the time is 1:02 AM ... */
say time(’Hours’) ==>1
say time(’m’) ==>62
say time(’S’) ==>3720
call time ’R’ /* reset timer */
say time(’E’) ==>.020

1.174 trace()

Usage:TRACE(option)
Sets the tracing mode to that specified by the option keyword,which must be
one of the valid alphabetic or prefix options. The tracing options are
described in Chapter 7. The TRACE()function will alter the tracing mode even
during interactive tracing,when TRACE instructions in the source program are
ignored. The returned value is the mode in effect before the function
call;this allows the previous trace mode to be restored later.
Example:

/* Assume tracing mode is ?AL */
say trace(’Results’) ==>?A

Arexx 78 / 152

1.175 translate()

Usage:TRANSLATE(string,[output],[input],[pad])
This function constructs a translation table and uses it to replace selected
characters in the argument string. If only the string argument is given,it
is translated to uppercase. If an input table is supplied,it modifies the
translation table so that characters in the argument string that occur in the
input table are replaced with the corresponding character in the output
table. Characters beyond the end of the output table are replaced with the
specified pad character or a blank.

Note that the result string is always of the same length as the original
string. The input and output tables may be of any length.
Examples:

say translate("abcde","123","cbade","+") ==>321++
say translate("low") ==>LOW
say translate("0110","10","01") ==>1001

1.176 trim()

Usage:TRIM(string)
Removes trailing blanks from the string argument.
Example:

say length(trim(’ abc ’)) ==>4

1.177 upper()

Usage:UPPER(string)
Translates the strip to uppercase. The action of this function is equivalent
to that of TRANSLATE(string),but it is slightly faster for short strings.
Example:

say upper(’One Fine Day’) ==>ONE FINE DAY

1.178 value()

Usage:VALUE(name)
Returns the value of the symbol represented by the name argument.
Example:

/* Assume that J has the value of 12 */
say value(’j’) ==>12

1.179 verify()

Usage:VERIFY(string,list,[’Match’])
If the Match argument is omitted,the function returns the index of the first
character in the string argument which is not contained in the list
argument,or 0 if all of the characters are in the list. If the Match keyword

Arexx 79 / 152

is supplied, the function returns the index of the first character which is
in the list,or 0 if none of the characters are.
Examples:

say verify(’123456’,’0123456789’) ==>0
say verify(’123a56’,’0123456789’) ==>4
say verify(’123a45’,’abcdefghij’,’m’) ==>4

1.180 word()

Usage:WORD(string,n)
Returns the nth word in the string argument,or the null string if there are
fewer than n words.
Example:

say word(’Now is the time ’,2) ==>is

1.181 wordindex()

Usage:WORINDEX(string,n)
Returns the starting position of the nth word in the argument string,or 0 if
there are fewer than n words.
Example:

say wordindex(’Now is the time ’,3) ==>8

1.182 wordlength()

Usage:WORDLENGTH(string,n)
Returns the length of the nth word in the string argument.
Example:

say wordlength(’one two three’,3) ==>5

1.183 words()

Usage:WORDS(string)
Returns the number of words in the string argument.
Example:

say words("You don’t say!") ==>3

1.184 writech()

Usage:WRITECH(file,string)
Writes the string argument to the given logical file. The returned value is
the actual number of characters written.
Example:

say writech(’output’,’Testing’) ==>7

Arexx 80 / 152

1.185 writeln()

Usage:WRITELN(file,string)
Writes the string argument to the given logical file with a "newline"
appended. The returned value is the actual number of characters written.
Example:

say writeln(’output’,’Testing’) ==>8

1.186 x2c()

Usage:X2C(string)
Converts a string of hex digits into the(packed)character representation.
Blank characters are permitted in the argument string at byte boundaries.

Examples:
say x2c(’12ab’) ==>’12ab’x
say x2c(’12 ab’) ==>’12ab’x

1.187 xrange()

Usage:XRANGE([start],[end])
Generates a string consisting of all characters numerically between the
specified start and end values. The default start character is ’00’x,and the
default end character is ’FF’x. Only the first character of the start and
end arguments is significant.
Examples:

say xrange() ==>’00010203 ... FDFEFF’x
say xrange(’a’,’f’) ==>’abcdef’
say xrange(,’10’x) ==>’00010203040506070809010’x

1.188 tracing options

Trace options are sometimes called an alphabetic options,since the keywords
that select an option can be shortened to one letter for convenience. The
alphabetic options are:

ALL. All clauses are traced.
COMMANDS. All command clauses are traced before being sent to the external
host. Non-zero return codes are displayed on the console.
ERRORS. Commands that generate a non-zero return code are traced after the
clause is executed.
INTERMEDIATES. All clauses are traced,and intermediate results are displayed
during expression evaluation. These include the values retrieved for
variables, expanded compound names,and the results of function calls.
LABELS. All label clauses are traced as they are executed. A label will be
displayed each time a transfer of control takes place.
NORMAL. Command clauses will return codes that exceed the current error
failure level are traced after execution,and an error message is displayed.
This is the default trace option.

Arexx 81 / 152

RESULTS. All clauses are traced before execution,and the final result of
each expression is displayed. Values assigned to variables by ARG,PARSE,or
PULL instructions are also displayed.
SCAN. This is a special option that traces all clauses and checks for
errors, but suppresses the actual execution of the statements. It is helpful
as a preliminary screening steop for a newly-created program.

The tracing mode can be set using either the TRACE instruction or the TRACE()
Built-In function. The RESULTS trace option is recommended for
general-purpose testing. Tracing can be selectively disabled from within a
program so that previously-tested parts of a program can be skipped.

1.189 display formatting

Each trace line displayed on the console is indented to show the effective
control(nesting)level at that clause,and is identified by a special three-
character code,as shown in Table 7.1 below. The source for each clause is
preceded by its line number in the program. Expression results or
intermediates are enclosed in double quotes so that leading and trailing
blanks will be apparent.

TABLE 7.1 TRACING PREFIX CODES

CODE DISPLAYED VALUES
+++ Command or syntax error
>C> Expanded compound name
>F> Result of a function call
>L> Label clause
>O> Result of a dyadic operation
>P> Result of a prefix operation
>U> Uninitialized variable
>V> Value of a variable
>>> Expression or template result
>.> "Placeholder" token value

1.190 tracing output

The tracing output from a program is always directed to one of two logical
streams. The interpreter first checks for a stream named STDERR,and directs
the output there if the steam exists. Otherwise the trace output goes to the
standard output stream STDOUT and will be interleaved with the normal console
output of the program. The STDERR and STDOUT streams can be opened and
closed under program control,so the programmer has complete control over the
destination of tracing output.

In some cases a program may not have a predefined output stream. For
example,a program invoked from a host application that did not provide input
and output streams would not have an output console. To provide a tracing
facility for such programs,the resident process can open a special global
tracing console for use by any active program. When this console opens,the
interpreter automatically opens a stream named STDERR for each ARexx program
in which STDERR is not currently defined,and the program then diverts its

Arexx 82 / 152

tracing output to the new stream.

The global console can be opened and closed using the command utilities too
and tcc,respectively. The console may not close immediately upon
request,however. The resident process waits until all active programs have
diverted their tracing streams back to the default state before actually
closing the console. Applications programs may provide direct control over
the tracing console by sending request packets to the resident process,which
is discussed in Chapter 10.

The trace stream(STDERR or STDOUT)is also used for trace input,so a program
in interactive tracing mode will wait for user input from this console. The
global tracing console is always shared among all currently active programs.
Since it may be confusing to have several programs simultaneously writing to
the same console,it is recommended that only one program at a time be traced
using the global console.

1.191 command inhibition2

ARexx provides a tracing mode called command inhibition that suppresses host
commands. In this mode command clauses are evaluated in the normal
manner,but the command is not actually sent to the external host,and the
return code is set to zero. This provides a way to test programs that issue
potentially destructive commands,such as erasing files or formatting disks.
Command inhibition does not apply to command clauses that are entered
interactively. These commands are always performed,but the value of the
special variable RC is left unchanged.

Command inhibition may be used in conjunction with any trace option. It is
controlled by the "!" character,which may appear by itself or may precede any
of the alphabetic options in a TRACE instruction. Each occurrence of the "!"
character "toggles" the inhibition mode currently in effect. Command
inhibition is cleared when tracing is set to OFF.

1.192 interactive tracing

Interactive tracing is a debugging facility that allows the user to enter
source statements while a program is executing. These statements may be used
to examine or modify variable values,issue commands,or otherwise interact
with the program. Any valid language statements can be entered
interactively,with the same rules and restrictions that apply to the
INTERPRET instruction. In particular,compound statements such as DO and
SELECT must be complete within the entered line.

Interactive tracing can be used with any of the trace options. While in
interactive tracing mode,the interpreter pauses after each traced clause and
prompts for input with the code "+++." At each pause,three types of user
responses are possible.

If a null line is entered,the program continues to the next pause
point.
If an "=" character is entered,the preceding clause is executed again.

Arexx 83 / 152

Any other input is treated as a debugging statement,and is scanned and
executed.

The pause points during interactive tracing are determined by the tracing
option currently in effect,as the interpreter pauses only after a traced
clause. However,certain instructions cannot be safely(or
sensibly)re-executed, so the interpreter will not pause after executing one
of these. The "no-pause" instructions are CALL,DO,ELSE,IF,THEN,and
OTHERWISE. The interpreter will also not pause after any clause that
generate and execution error.

Interactive tracing mode is controlled by the "?" character,either by itself
or in combination with an alphabetic trace option. Any number of "?"
characters may precede an option,and each occurrence toggles the mode
currently in effect. For example,if the current trace option was NORMAL,then
"TRACE ?R" would set the option to RESULTS and select interactive tracing
mode. A subsequent "TRACE ?" would turn off interactive tracing.

1.193 error processing

The ARexx interpreter provides special error processing while it executes
debugging statements. Errors that occur during interactive debugging are
reported,but do not cause the program to terminate. This special processing
applies only to the statements that were entered interactively. Errors
occuring in the program source statements are treated in the usual way
whether or not the interpreter is in interactive tracing mode.

In addition to the special error processing,the interpreter also disables the
internal interrupt flags during interactive debugging. This is necessary to
prevent an accidental transfer of control due to an error or uninitialized
variable. However,if a "SIGNAL label" instruction is entered,the transfer
will take place,and any remaining interactive input will be abandoned. The
SIGNAL instruction can still be used to alter the interrupt flags,and the new
settings will take effect when the interpreter returns to normal processing.

1.194 the external tracing flag

The ARexx resident process maintains an external tracing flag that can be
used to force programs into interactive tracing mode. The tracing flag can
be set using the ts command utility. When the flag is set,any program not
already in interactive tracing mode will enter it immediately. The internal
trace option is set to RESULTS unless it is currently set to INTERMEDIATES or
SCAN,in which case it remains unchanged. Programs invoked while the external
tracing flag is set will begin executing in interactive tracing mode.

The external tracing flag provides a way to regain control over programs that
are caught in loops or are otherwise unresponsive. Once a program enters
interactive tracing mode,the user can step through the program statements and
diagnose the problem. There is one caveat,though:external tracing is global
flag,so all currently-active programs are affected by it. The tracing flag
remains set until it is cleared using the "te" command utility. Each program
maintains an internal copy of the last state of the tracing flag,and sets its

Arexx 84 / 152

tracing option to OFF when it observes that the tracing flag has been
cleared.

1.195 interrupts

ARexx maintains an internal interrupt system that can be used to detect and
trap certain error conditions. When an interrupt is enabled and its
corresponding condition arises,a transfer of control to the label specific to
that interrupt occurs. This allows a program to retain control in
circumstances that might otherwise cause the program to terminate. The
interrupt conditions can caused by either synchronous events like a syntax
error,or asynchronous events like a "control-C" break request. Note that
these internal interrupts are completely separate from the hardware interrupt
system managed by the EXEC operating system.

The interrupts supported by ARexx are described below. The name assigned to
each is actually the label to which control will be tranferred. Thus,a
SYNTAX interrupt will transfer control to the label "SYNTAX:." Interrupts can
be enabled or disabled using the SIGNAL instruction. For example,the
instruction "SIGNAL ON SYNTAX" would enable the SYNTAX interrupt.

BREAK_C. This interrupt will trap a control-C break request generated by
DOS. If the interrupt is not enabled,the program terminates immediately with
the error message "Execution halted" and returns with the error code set to 2

BREAK_D. The interrupt will detect and trap a control-D break request issued
by DOS. The break request is ignored if the interrupt is not enabled.

BREAK_E. The interrupt will detect and trap a control-E break request issued
by DOS. The break request is ignored if the interrupt is not enabled.

BREAK_F. The interrupt will detect and trap a control-F break request issued
by DOS. The break request is ignored if the interrupt is not enabled.

ERROR. This interrupt is generated by any host command that returns a
non-zero code.

HALT. An external halt request will be trapped if this interrupt is enabled.
Otherwise,the program terminates immediately with the error message
"Execution halted" and returns with the error code set to 2.

IOERR. Errors detected by the I/O system will be trapped if this interrupt
is enabled.

NOVALUE. An interrupt will occur if an uninitialized variable is used while
this condition is enabled. The usage could be within an expression,in the
UPPER instruction,or with the VALUE()built-in function.

SYNTAX. A syntax or execution error will generate this interrupt. Not all
errors such errors can be trapped,however. In particular,certain errors
occurring before a program is actually executing,and those detected by the
ARexx external interface,cannot be trapped by the SYNTAX interrupt.

When an interrupt forces a transfer of control,all of the currently active
control ranges are dismantled,and the interrupt that caused the transfer is

Arexx 85 / 152

disabled. This latter action is necessary to prevent a possible recursive
interrupt loop. Only the control structures in the current environment are
affected,so an interrupt generated within a function will not affect the
caller’s environment.

SPECIAL VARIABLES. Two special variables are affected when an interrupt
occurs. The variable SIGL is always set to the current line number before
the transfer of control takes place,so that the program can determine which
source line was being executed. When an ERROR or SYNTAX interrupt occurs,the
variable RC is set to the error code that caused the condition. For ERROR
interrupts this value will be a command return code,and can usually be
interpreted as an error severity level. The value for SYNTAX interrupts is
always an ARexx error code.

Interrupts are useful primarily to allow a program to take special
error-recovery actions. Such actions might involve informing external
programs that an error ocurred,or simply reporting further diagnostics to
help in isolating the problem. In the following example,the program issues a
"message" command to an external host called "MyEdit" whenever a syntax error
is detected:

/* A macro program for ’MyEdit’ */
signal on syntax /* enable interrupt */

.

. (normal processing)

.
exit
syntax: /* syntax error detected*/

address ’MyEdit’
’message’ ’error’ rc errortext(rc)
exit 10

1.196 template structure

The tokens that are valid in a template are symbols,strings,operators,
parentheses,and commas. Any blanks that may be present as separators are
removed before the template is processed. The tokens in a template
ultimately serve to specify one of the two basic template objects:

Markers determine a scan position within the parse string,and Targets are
symbols to be assigned a value.

With these objects in mind,the parsing process can be described as one of
associating with each target a starting and ending position in the parse
string. The substring between these positions then becomes the value for the
target.

MARKETS. There are three types of marker objects:

ABSOLUTE markers specify an actual index position in the parse string,
RELATIVE markers specify a positive or negative offset from the current
position,and
PATTERN markers specify a position implicitly,by matching the pattern against
the parse string beginning at the current scan position.

Arexx 86 / 152

TARGETS. Targets,like markers,can affect the scan position if value strings
are being extracted by tokenization. Parsing by tokenization extracts
words(tokens) from the parse string, and is used whenever a target is
followed immediately by another target. During tokenization the current scan
position is advanced past any blanks to the start of the next word. The
ending index is the position just past the end of the word,so that the value
string has neither leading nor trailing blanks.

1.197 template objects

Each template object is specified by one or more tokens,which have the
following interpretations.

SYMBOLS. A symbol token may specify either a target or a marker object. If
it follows an operator token(+,-,or=),it represents a marker,and the symbol
value is used as an absolute or relative position. Symbols enclosed in
parentheses specify pattern markers,and the symbol value is used as the
pattern string.

If neither of the preceding cases applies and the symbol is a variable,then
it specifies a target. Fixed symbols always specify absolute markers and
must be whole numbers,except for the period(.)symbol which defines a
placeholder target.

STRINGS. A string token always represents a pattern marker.

PARENTHESES. A symbol enclosed in parentheses is a pattern marker,and the
value of the symbol is used as the pattern string. While the symbol may be
either fixed or variable,it will usually be a variable,since a fixed pattern
could be given more simply as a string.

OPERATORS. The three operators "+,"-,"and "=" are valid within a
template,and must be followed by a fixed or variable symbol. The value of
the symbol is used as a marker and must therefore represent a whole number.
The "+" and "-" operators signify a relative marker,whose value is negated by
the "-" operator. The "=" operator indicates an absolute marker,and is
optional if the marker is defined by a fixed symbol.

COMMAS. The comma(,)marks the end of a template,and is used as a separator
when multiple templates are provided with an instruction. The interpreter
obtains a new parse string before processing each succeeding template. For
some source options,the new string will be identical to the previous one.
The ARG,EXTERNAL, and PULL options will generally supply a different
string,as will the VAR option if the variable has been modified.

1.198 the scanning process

Scan positions are expressed as an index in the parse string,and can range
from 1(the start of the string)to the length of the string plus 1(the end).
An attempt to set the scan position before the start or after the end of the
string instead sets it to the beginning or end,respectively.

Arexx 87 / 152

The substring specified by two scan indices includes the characters from the
starting position up to,but not including,the ending position. For
example,the indices 1 and 10 specify characters 1-9 in the parse string. One
additional rule is applied if the second scan index is less than or equal to
the first: in this case the remainder of the parse string is used as the
substring. This means that a template specificaiton like

parse arg 1 all 1 first second

will assign the entire parse string to the variable ALL. Of course,if the
current scan index is already at the end of the parse string,then the
remainder is just the null string.

When a pattern marker is matched against the parse string,the marker position
is the index of the first character of the matched pattern,or the end of the
string if no match was found. The pattern is removed from the string
whenever a match is found. This is the only operation that modifies the
parse string during the parsing process.

Templates are scanned from left to right with the initial scan index set to
1, the start of the parse string. The scan position is updated each time a
marker object is encountered,according to the type and value of the marker.
Whenever a target object is found,the value to be assigned is determined by
examining the next template object. If the next object is another target,the
value string is determined by tokenizing the parse string. Otherwise,the
current scan position is used as the start of the value string,and the
position specified by the following marker is used as the end point.

The scan continous until all of the objects in the template have been used.
Note that every target will be assigned a value;once the parse string has
been exhausted,the null string is assigned to any remaining targets.

1.199 templates in action

The preceding section is rather abstract,so let’s look now at some examples
of parsing with templates.

1.200 parsing by tokenization

Computer programs frequently require splitting a string into its component
words or tokens. This is easily accomplished with a template consisting
entirely of variables(targets).

/* Assume "hammer 1 each $600.00" was entered */
pull item qty untils cost .

In this example the input line from the PULL instruction is split into words
and assigned to the variables in the template. The variable item receives
the value "hammer," qty is set to "1," units is set to "each," and cost gets
the value "$600.00." The final placeholder(.) is given a null value,since
there are only four words in the input. However,it forces the preceding
variable cost to be given a tokenized value. If the placeholder were

Arexx 88 / 152

omitted,the remainder of the parse string would be assigned to cost,which
would then have a leading blank.

In the next example,the first word of a string is removed and the remainder
is placed back in the string. The process continues until no more words are
extracted.

/* Assume "result" contains a string of words */
do forever

/* Get first word of string */
parse var result first result
if first == ’’ then leave
/* ... process words ... */
end

1.201 pattern parsing

The next example uses pattern markers to extract the desired fields. The
"pattern" in this case is very simple -- just a single character -- but in
general can be an arbitrary string of any length. This form of parsing is
useful whenever delimiter characters are present in the parse string.

/* Assume an argument string "12,34.5,1 */
arg hours ’,’ rate ’,’ withhold

Keep in mind that the pattern is actually removed from the parse string when
a match is found. If the parse string is scanned again from the
beginning,the length and structure of the string may be different than at the
start of the parsing process. However,the original source of the string is
never modified.

1.202 positional markers

Parsing with positional markers is used whenever the fields of interest are
known to be in certain positions in a string. In the next example,the
records being processed contain a variable length field. The starting
position and length of the field are given in the first part of the
record,and a variable positional marker is used to extact the desired field.

/* records look like: */
/* start: 1-5 */
/* length: 6-10 */
/* name: @(start,length) */
parse value record with 1 start +5 length +5 =start name +length

The "=start" sequence in the above example is an absolute marker whose value
is the position paced in the variable start earlier in the scan. The
"+length" sequence supplies the effective length of the field.

1.203 multiple templates

Arexx 89 / 152

It is sometimes useful to specify more than one template with an instruction,
which can be done by separating the templates with a comma. In this next
example,the ARG instruction(or PARSE UPPER ARG)is used to access the argument
strings provided when the program was called. Each template accesses the
succeeding argument string.

/* Assume arguments were (’one two’,12,sort) */
arg first second,amount,action,option

The first template consists of the variables first and second,which are set
to the values "one" and "two,"respectively. In the next two templates amount
gets the value "12" and action is set to "SORT". The last template consists
of the variable "option,"which is set to the null string,since only three
arguments were available.

When multiple templates are used with the EXTERNAL or PULL source
options,each additional template requests an additional line of input from
the user. In the next example two lines of input are read:

/* read last,first,and middle names and ssn */
pull last ’,’ first middle,ssn

The first input line is expected to have three words,the first of which is
followed by a comma,which are assigned to the variables last,first,and
middle. The entire second input line is assigned to the variable ssn.

Multiple templates can be useful even with a source option that returns the
identical parse string. If the first template included pattern markers that
altered the parse string,the subsequent templates could still access the
original string. Note that subsequent parse strings obtained from the VALUE
source do not cause the expression to be reevaluated,but only retrieve the
prior result.

1.204 ch9 concept

This chapter describes some of the capabilities of the ARexx resident
process, a global communications and resources manager. The material
presented here is directed to the general user;Chapter 10 covers these topics
in greater depth for software developers who wish to integrate ARexx with
other applications programs.

The resident process must be active before any ARexx programs can be run. It
announces its presence to the system by opening a public message port named
"REXX,"so applications programs that use ARexx should check for the presence
of this port. If the port is not open,the user can either be informed that
the macro processor is not available,or else the applications program can
start up the resident process. The latter option can be done using the
rexxmast command.

The primary function of the resident process is to launch ARexx programs.
When an applications program sends a "command" or "function" message to the
"REXX" port,the resident process creates a new DOS process to execute the
program, and forwards the invocation message to newly created process. It
also creates a new instance of the ARexx global data structure,which links

Arexx 90 / 152

together all of the structures manipulated by the program.

In addition to launching programs,the resident process managers various
resources used by ARexx. These resources include a list of available
function libraries called the Library List,a list of(name,value)pairs called
the Clip List,and a list of the currently active ARexx programs. Built-In
functions are available to manipulate the Library List and Clip List from
within an ARexx program. Applications programs can modify a resource list
either by sending a request packet to the resident process or by direct
manipulation of the list.

1.205 command utilities

ARexx is supplied with a number of command utilities to provide various
control functions. These are executable modules that can be run from the
CLI,and should reside in the system command(C:)directory for convenience.
These commands are relevant only when the ARexx resident process is active.

The functions performed by these utilities may also be available from within
an applications program. All of the utilities are implemented by sending
message packets to the resident process,so an application designed to work
closely with ARexx could easily provide these functions as part of its
control menu.

1.206 hi

Usage:HI
Sets the global halt flag,which causes all active programs to receive an
external halt request. Each program will exit immediately unless its HALT
interrupt has been enabled. The halt flag does not remain set,but is cleared
automatically after all current programs have received the request.

1.207 rx

Usage:RX name[arguments]
This command launches an ARexx program. If the specified name includes an
explicit path,only that directory is searched for the program;otherwise,the
current directory and the system REXX: device are checked for a program with
the given name. The optional argument string is passed to the program.

1.208 rxset

Usage:RXSET name value
Adds a(name,value)pair to the Clip List. Name strings are assumed to be in
mixed case. If a pair with the same name already exists,its value is
replaced with the current string. If a name without a value string is
given,the entry is removed from the Clip List.

Arexx 91 / 152

1.209 rxc

Usage:RXC
Closes the resident process. The "REXX" public port is withdrawn
immediately, and the resident process exits as soon as the last ARexx program
finishes. No new programs can be launched after a "close" request.

1.210 tcc

Usage:TCC
Closes the global tracing console as soon as all active programs are no
longer using it. All read read requests queued to the console must be
satisfied before it can be closed.

1.211 tco

Usage:TCO
Open the global tracing console. The tracing output from all active programs
is diverted automatically to the new console. The console window can be
moved and resized by the user,and can be closed with the "TCC" command.

1.212 te

Usage:TE
Clears the global tracing flag,which forces the tracing mode to OFF for all
active ARexx programs.

1.213 ts

Usage:TS
Starts interactive tracing by setting the external trace flag,which forces
all active ARexx programs into interactive tracing mode. Programs will start
producing trace output and will pause after the next statement. This command
is useful for regaining control over programs caught in infinite loops or
otherwise misbehaving. The trace flag remains set until cleared by the TE
command,so subsequent program invocations will begin executing in interactive
tracing mode.

1.214 resource management

Individual ARexx programs manage their internal memory allocation and I/O
file resources,but some resources need to be available to all programs. The
management of these global resources is one of the major functions of the
resident process. Global resources are maintained as doubly-linked lists,in

Arexx 92 / 152

keeping with the general design principles of the EXEC operating system.
Linked lists provide a flexible and open mechanism for resource
management,and help avoid the built-in limits common with other approaches.

1.215 the global tracing console

The tracing output from an ARexx program usually goes to the standard output
stream STDOUT,and is therefore interleaved with the normal output of the
program. Since this may be confusing at times,a global trace console can be
opened to display only tracing output. The console can be opened using the
tco command utility or be sending an RXTCOPN request packet to the resident
process. ARexx programs will automatically divert their tracing output to
the new window,which is opened as a standard AmigaDOS console. The user can
move it and resize it as required.

The tracing console also serves as the input stream for programs during
interactive tracing. When a program pauses for tracing input,the input line
must be entered at the trace console. Any number of programs may use the
tracing console simultaneously,although it is generally recommended that only
one program at a time be traced.

The tracing console can be closed using the tcc command or by sending an
RXTCCLS request packet to the resident process. The closing is delayed until
all read requests to the console have been satisfied. Only when all of the
active programs indicate that they are no longer using the console will it
actually be closed.

1.216 the library list

The resident process maintains a Library List of the function libraries and
function hosts currently available to ARexx programs. This list is used to
resolve all references to external functions. Each entry has an associated
search priority in the range 100 to -100,with the higher-valued entries being
searched first until the requested function is found. The list is searched
by calling each entry,using the appropriate protocol,until the return code
indicates that the function was found.

The two types of entities maintained by the list are quite different in some
respects,but the ultimate way in which a function call is resolved is
transparent to the calling program. A function library is a collection of
functions organized as an Amiga shared library,while a function host is a
separate task that manages a message port. Function libraries are called as
part of the ARexx interpreter’s task context,but calls to function hosts are
mediated by passing a message packet. The ARexx resident process is itself a
function host,and is installed in the Library List at a priority of -60.

The resident process provides addition and deletion operations for
maintaining the Library List;these operations are performed by sending an
appropriate message packet. The Library List is always maintained in
priority order. Within a given priority level any new entries are added to
the end of the chain, so that entries added first will be searched fist. The
priority levels are significant if any of the libraries have duplicate

Arexx 93 / 152

function name definitions,since the function located further down the search
chain could never be called.

FUNCTION LIBRARIES. Each function library entry in the Library List contains
a library name,a search priority,an entry point offset,and a version number.
The library name must refer to a standard Amiga shared library residing in
the system LIBS: directory so that it can be loaded when needed. Function
libraries can be created and maintained by users or applications
developers;Chapter 10 has information on their design and implementation.

The "query" function is the library entry point that is actually called by
the interpreter. It must be specified as an integer offset(e.g. "-30")from
the library base. The return code from the query call then indicates whether
the desired function was found;it it was,the function is called with the
parameters passed by the interpreter and the function result is returned to
the caller. Otherwise,the search continues with the next entry in the list.
In either event the library is closed to await the next call.

A note of caution: not every Amiga shared library can be used as a function
library. Function libraries must have a special entry point to perform the
dynamic linking required to access the functions from within ARexx. Each
library should include documentation providing its version number and the
integer offset to its "query" entry point.

FUNCITON HOSTS. The name associated with a function host is the name of its
public message port. Function calls are passed to the host as a message
packet; it is then up to the individual host to determine whether the
specified function name is one that it recognizes. The name resolution is
completely internal to the host,so function hosts provide a natural gateway
mechanism for implementing remote procedure calls to other machines in a
network.

1.217 the clip list

The Clip List maintains a set of(name,value)pairs that may be used for a
variety of purposes. Each entry in the list consists of a name and a value
string,and may be located by name. Since the Clip List is publicly
accessible, it may be used as a general clipboard-like mechanism for
intertask communication. In general,the names used should be chosen to be
unique to an application to prevent collisions with other programs. Any
number of entries may be posted to the list.

One potential application for the Clip List is as a mechanism for loading
predefined constants into an ARexx program. The language definition does not
include a facility comparable to the "header file" preprocessor in the "C"
language. However,consider a string in the Clip List of the form

pi=3.14159; e=2.718; sqrt2=1.414 ...

i.e.,a series of assignments separated by semicolons. In use,such a string
could be retrieved by name using the Built-In function GETCLIP()and then
INTERPRETed within the program. The assignment statements within the string
would then create the required constant definitions. The following program
fragment illustrates the process::

Arexx 94 / 152

/* assume a string called "numbers" is available*/
numbers=getclip(’numbers’) /* case-sensitive */
interpret numbers /* ... assignments*/
...

More generally,the strings would not be restricted to contain only assignment
statements,but could include any valid ARexx statements. The Clip List could
thus provide a series of programs for initializations or other processing
tasks.

The resident process supports addition and deletion operations for
maintaining the Clip List. The names in the(name,value)pairs are assumed to
be in mixed cases,and are maintained to be unique in the list. An attempt to
add a string with an existing name will simply update the value string. The
name and value strings are copied when an entry is posted to the list,so the
program that adds an entry is not required to maintain the strings.

Entries posted to the Clip List remain available until explicitly removed.
The Clip List is automatically released when the resident process exits.

1.218 basic structures

Most developers will need to work with only two of the data structures used
by ARexx. The RexxArg structure is used for all of the strings manipulated
by the interpreter. It is usually passed as an argstring,a pointer offset
from the structure base that may be treated like an ordinary string pointer.
The RexxMsg structure is an extension of an EXEC Message,and is the message
packet used for all communications with external programs.

ARGSTRINGS. All ARexx strings are maintained as RexxArg structures,which are
diagrammed in Table 10.1 below. Note that his actually a variable-length
structure allocated for each specific string length. String parameters are
sent in the form of argstrings,a pointer to the string buffer area of the
RexxArg structure. The string in the stucture is always given a trailing
null byte,so that external programs can treat argstrings like a pointer to a
null-terminated string. Additional data about the string(its length,hash
code,and attributes) are available at negative offsets from the argstring
pointer.

Table 10.1 The RexxArg Structure

STRUCTURE RexxArg,0
LONG ra_Size ; allocated length
UWORD ra_Length ; length of string
UBYTE ra_Flags ; attribute flags
UBYTE ra_Hash ; hash code
STRUCT ra_Buff,8 ; buffer (argstring points here)

Library functions are available to create and delete argstrings,and for
converting integers into argstring format. The function CreateArgstring()
allocates a structure and copies a string into it,and returns an argstring
pointer to the structure. The function DeleteArgstring()can be used to
release an argstring when it is no longer needed.

MESSAGE PACKETS. All communications between ARexx and external programs are

Arexx 95 / 152

mediated with with message packets,whose structure is diagrammed in Table
10.2 below. Functions are provided in the ARexx Systems Library to create,
initialize,and delete these message packets. Each packet sent from ARexx to
an external program is marked with a special pointer in its name field. This
can be used to distinguish the message packets from those belonging to other
programs,in case a message port is being shared.

Message packets are created using the CreateRexxMsg()function,and can be
released using the DeleteRexxMsg(). Note that the message packets passed by
ARexx to a host application(as a command,for instance)are identical to the
packets the host would use to invoke an ARexx program. This commonality of
design means that only one set of functions is needed to create and delete
message packets,and that external programs can use the same routines that the
interpreter uses to handle the packets.

RESOURCE NODES. A somewhat higher-level data structure called a "resource
node" (a RexxRsrc structure)is used extensively within ARexx to maintain
resource lists. These nodes are variable-length structures that include the
total allocated length as a field within the node,and that also provide for
an "auto-delete" function. This latter capability allows the address of a
clean-up function to be associated with the node so that an entire(possibly
inhomogeneous)list of resource nodes can be deallocated with a single
function call.

Table 10.2 The RexxMsg Structures

STRUCTURE RexxMsg,MN_SIZE
APTR rm_TaskBlock ; global pointer
APTR rm_LibBase ; library pointer
LONG rm_Action ; command code
LONG rm_Result1 ; primary result
LONG rm_Result2 ; secondary result
STRUCT rm_Args,16*4 ; arguments (ARGO-ARG15)

; the extension area
APTR rm_PassPort ; forwarding port
APTR rm_CommAddr ; host address
APTR rm_FileExt ; file extention
LONG rm_Stdin ; input stream
LONG rm_Stdout ; output steam
LONG rm_avail ; reserved
LABEL rm_SIZEOF ; 128 bytes

1.219 designing a command interface

The minimal command interface between ARexx and an applications program
requires only a public message port and a routine to process the commands
received. For most host applications this will require little extra
machinery, as the program will probably already have several message ports
for key and menu events,timer messages,and so on. Processing the command
strings should be relatively straightforward for command-oriented
applications. Hosts that are entirely menu-driven will require somewhat more
additional programming,unless commands are supported only as simulated menu
events. The specific choice of which commands to support is always left up
to the applications designer,as ARexx imposes no restrictions on the
structure of the commands that can be issued.

Arexx 96 / 152

The basic sequence of events in the command interface begins when the host
sends a command invocation message to the ARexx resident process. This is
usually in response primitives supported by the host. When the resident
process receives the message packet,it spawns a new DOS process the run the
macro program. The command line is parsed to extract the command token(the
first word),and the interpreter searches for a file that matches the command
name.

Once a macro program file has been found,it is executed by the interpreter
and (usually)results in one or more commands being issued back to the host
application’s public port. The macro program waits while each command is
processed by the host,and takes appropriate actions if the return code
indicates that an error occurred. Eventually the macro program finishes and
returns the invocation message packet back to the host.

Error handling is an important consideration in the interface design. Macro
programs must receive return codes so that processing actions can be altered
when errors occur.

Normally,the host application should not return a message packet until the
command has been processed and its error status in known. Hosts that support
two streams of commands(from the user and from the command interface)will
need a flag to indicate the source of each command. Errors in user commands
might normally be reported on the screen,but errors in ARexx commands must be
reported by setting the result field in the message packet.

Return codes should generally be chosen to follow the model of an error
severity level,with small integers representing relatively harmless
conditions and larger values indicating progressively more severe errors.
This will allow a characteristic failure level to be established within a
macro program,so that insignificant errors can be ignored. The choice of the
specific return code values is left to the applications designer.

1.220 receiving command messages

Each host application must open a public message port to support the command
interface. When a macro program issues a command to the host,a message
packet containing the command is sent to this public port. The structure of
these message packets is shown in Table 10.2. The rm_Action field will be
set to RXCOMM,and the ARGO parameter slot will contain the command as an
argstring pointer. Parameter slots ARG1-ARG15 are not used for command
messages. Two other fields are potentially of interest: the rm_RexxTask
field contains a pointer to the global data structure for the program that
issued the command, and the rm_LibBase field has the ARexx library base
address. The fields in the extension area may also be of interest to the
host program;these are described later on. Except for setting the result
fields rm_Result1 and rm_Result2,the host application should not alter the
message packet.

1.221 result fields

Arexx 97 / 152

When the host program finishes processing the command,it must set the primary
result field rm_Result1 to an error severity level or zero if no errors
occurred. This is the field which will be assigned to the special variable
RC in the macro program. The secondary result field rm_Result2 should be set
to zero unless a result string(as described below)is being returned. The
packet can then be returned to the sender using the EXEC function ReplyMsg().

In some cases a macro program may request a result string by setting the
RXFB_RESULT modifier bit in the command code. If possible,the host
application should then return the result as an argstring pointer in the
secondary result field rm-Result2. A result string should only be returned
if explicitly requested and if no errors occurred during the call(rm_Result1
set to zero). Failure to observe these rules will result either in memory
loss or in corruption of the system free-memory list.

1.222 multiple host processes

Many applications programs support concurrent activities on several sets of
data. For example,most text editors allow several files to be edited at
once. A command issued from a particular instance of the editor might invoke
an ARexx macro program,so clearly any commands issued from that macro would
have to be directed to the correct instance of the editor. ARexx provides
for this by allowing the applications program to declare an initial host
address when a program is invoked. A separate message port would be opened
for each instance of the host application,and this port would be named as the
initial host address for all invocations from that instance. In the example
above,if the editor opened two ports named "MyEdit1" and "MyEdit2,"then
programs invoked by the "MyEdit1" instance would send commands back to the
"MyEdit1" port.

MULTIPLE MESSAGE PORTS. Host applications are not limited to having a single
message port for commands. If several different kinds of commands are to be
received,it might be appropriate to set up more than one port. Macro
programs would then use the ADDRESS instruction to direct commands to the
appropriate port. The different ports could be used simultaneously,since
ARexx programs execute as separate tasks.

1.223 invoking arexx programs

ARexx programs are invoked by sending a message packet to the resident
process. Programs may be invoked as either a command or as a function. The
command mode of invocation is generally simpler,as it requires setting only a
few fields in the message packet.

1.224 message packets

The structure of the message packet supported by ARexx is shown in Table
10.2. This structure provides fields for passing arguments and for
specifying overrides to various internal defaults. The packets are

Arexx 98 / 152

cleared(set to 0)when allocated,and the client-supplied fields are never
altered by ARexx. Message packets can be reused after being returned,and
generally only one is required.

COMMAND(ACTION)CODE. The rm_Action field of the message packet determines
the mode of invocation. It can be set to either RXCOMM or RXFUNC for command
or function mode,respectively. Several modifier flags can be used with the
command code;these are described later in this chapter.

ARGUMENT STRINGS. Command strings,function names,and argument strings must
be supplied as argstrings. Strings can be conveniently packaged into
argstrings using the CreateArgstring()library function,which takes a string
pointer and a length as its arguments. Argstrings point to a null-terminated
string and may be treated like an ordinary string pointer in most cases. In
principle,a host application could build the argstrings directly,but since
the strings must remain unchanged for the duration of a ARexx program,the
host might need to maintain many such structures.

The argstrng pointer returned by CreateArgstring()is installed in the
appropriate parameter slot of the message package:ARGO for the command string
or function name,and ARG1-ARG15 for argument strings. Argstrings can be
recycled after a packet has returned by calling the DeleteArgstring()
function.

SENDING THE PACKET. Once the required fields have been filled in,the host
application can send the packet to the "REXX" public port using the EXEC
function PutMsg(). The address of the "REXX" port can be obtained by a call
to the FindPort()function,but this address should not be cached
internally,since the port could close at any time. To be absolutely safe,the
calls to FindPort() and PutMsg()should be bracketed by calls to the EXEC
routines Forbid()and Permit(). This will exclude the slight possibility that
the message port could close in the few microseconds before the message
packet is actually sent to the port address.

After sending the packet the host can return to its normal processing,since
the macro program will execute as a separate task. In most cases it will be
advisable to "lock-out" further user commands while the ARexx program is
running,to preserve te integrity of any shared data structures that may be
accessed externally.

1.225 command invocations

In the command mode of invocation the host supplies a command string
consisting of a name token followed by an argument string. ARexx parses the
string to extract the command name,which is usually the name of a program
file. The default action is to use the remainder of the command string as
the(single) argument string for the program. This may be overridden by
requesting command tokenization,which is done by setting the RXFB_TOKEN
modifier flag in the action code of the message packet. In this case the
entire command string will be parsed,and the program may have many argument
strings.(There is no limit to the number of arguments that may be derived
from the command string,since they don’t have to fit into the parameter slots
of the message packet.)

The parsing process uses "white space" (blanks,tabs,etc.)as the token

Arexx 99 / 152

separators,and has a several special features.

QUOTING CONVENTION. Either single(’)or double(")quotes may be used to
surround items that include "white space" and would otherwise be separated
during parsing. Single quotes may appear within a double-quote-delimited
token,and vice versa;however,double-delimiter sequences are not accepted.
The quotes are removed from the parsed token. An "implicit" quote at the end
of the string is also recognized. If the command string ends before the
closing delimiter has been found,the null byte is accepted as the final
delimiter. For example,

look.rexx "Now is the time" "can’t ou see

is a command with the two arguments strings "Now is the time" and "can’t you
see"(but without the quotes.)

STRING FILES. If the command name(the first token of the string)is quoted,it
is assumed to be a "string file" --an ARexx program in a string,rather than
the name of a disk file. This is a convenient way to run very brief
programs, although programs of any length may be stored this way. If command
tokenization has not been specified,the remainder of the string is not
scanned and no quote characters are removed. In this case the quoting
convention isuseful only for indicating "string file" programs. The entire
command string can be declared as a "string file" by setting the RXFB_STRING
modifier flag of the action code. When this flag is set,no parsing at all is
applied to the command.

RESULT STRING. Command invocations do not usually request a result
string,but can do so by setting the RXFB_RESULT modifier flag. The host
application must be prepared to recycle the returned result string once it is
no longer needed.

1.226 function invocations

In a function invocation the host application supplies a function name string
and from 0 to 15 argument strings. The name string is used to locate an
external program file and may include directory specifiers and a file
extension. The actual argument count(not including the name string)must be
placed in the low-order byte of the command code.

This mode of invocation is normally used when a result string is expected and
the argument strings are conveniently available. Note that a result does not
have to be requested,however.

RESULT STRINGS. Function invocations request a result string by setting the
RXFB_RESULT modifier flag bit. If no errors occurred and a result string was
requested,the secondary result field in the returned packet will be a pointer
to the result string. However,if the program exited without supplying a
result, the secondary field will be zero.

STRING FILES. The function name argument may specify a "string file" rather
than the name of a filing system object. This is indicated by setting the
RXFB_STRING modifier flag.

Arexx 100 / 152

1.227 search order

The search for a program file matching a command or function name is normaly
a two-step process. For each directory to be checked,a search is made first
with the current file extension appended to the name string. If this search
fails, the second search uses the unmodified name string. The first step is
skipped if the command or function name includes an explicit file extension.

The default file extension is ".rexx,"but this can be changed by supplying a
file extension string in an extended message packet. Host applications will
usually specify a file extension,since it provides a convenient way to
distinguish the macro programs that are specific to that application. Refer
to the section on Extension Fields for further details.

The search path for a program depends on the way the program name was
specified. If an explicit device or directory specification precedes the
program name,only that directory will be searched. For example,the command-
level invocation of "rx df0:s/test" will search only the df0:s directory for
a file named test.rexx or test. If the program name does not include a
path,the search path begins with the current directory and proceeds to the
system REXX: directory. To further the above example,invoking the program
as "rx test 1 2 3" would search for the files
test.rexx,test,REXX:test.rexx,and REXX:test,in that order.

If an ARexx program cannot be found,one alternative action may be taken. If
the rm_PassPort field of an extended packet was supplied,the message packet
is passed along to that port,which might be the next process in a search
chain. Otherwise the message is returned with a "Program not found"error
indication (error code 1.) @endnode

1.228 extension fields

The RexxMsg structure includes several "extension fields" that can be used to
override various defaults when a program is invoked. These extension fields
can be filled in selectively,and only the non-zero values will override the
corresponding default. ARexx never modifies the extension area.

Host applications should supply values for the file extension and host
address fields of the message packet. The file extension affects which
program files will match a given command name,and allows macro programs
specific to the host to be given distinctive names. The host address must
refer to a public message port,and will usually indicate the host’s own port.
Any appropriate(but usually short)strings can be chosen for these values.
Oftern,the name of the applications program itself can be used as its host
address and file extension.

PASSPORT. The rm_PassPort field allows the search for a program to be
"passed along" to another messsage port after checking for an ARexx program.
If the command or function name doesn’t resolve to an ARexx program,the
message packet is forwarded to the message port specified as the PassPort.
This allows applications to maintain control over the search order for
external program files.

Note that the rm_PassPort field must be the actual address of a message port,

Arexx 101 / 152

rather than a name string. The PassPort therefore does not have a public
port, but the port should be a secured resource,since the message is sent
directly to this address without checking to see whether it is a valid
message port.

HOST ADDRESS. The rm_ComAddr field overrides the default initial host
address, which is "REXX." The host address is the name of the messsage port
to which commands will be directed,and is supplied as a pointer to a
null-terminated string. Applications that support multiple instances of user
data will usually create a separate message port for each instance. The name
of this port would then be supplied as the host address for any commands
issued from that instance.

FILE EXTENSION. The rm_FileExt field is used to override the default file
extension for ARexx programs,which is "REXX". Host applications can use the
file extension to distinguish the names of the macro programs specific to
that application. It is supplied as a pointer to a null-terminated string.

INPUT AND OUTPUT STREAMS. The default input and output steams for an ARexx
program are inherited from the host application’s process structure,if the
host is a process rather than just a task. One or both of these streams may
be overridden by supplying an appropriate value in the rm-Stdin or rm_stdout
fields. The values supplied must be valid DOS filehandles,and must not be
closed while the program is executing. The steams are installed directly
into the program’s process structure,replacing the prior values.

The output stream is also used as the default tracing stream for the program.
If interactive tracing is to be used in a program,the output stream should
refer to a console device,since it will be used for input as well.

In the event than an ARexx program is invoked by an EXEC task,rather than by
an DOS process,the extension field streams are the only way that the launched
program can be given default I/O streams.

1.229 interpreting the result fields

The message packet that invoked an ARexx program is returned to the client
when the program finishes. The two result fields will contain error codes or
possibly a result string. The interpretation of the result fields depends
partly on the mode of invocation. If the primary result field rm_Result1 is
zero,the program executed normally and the secondary field rm_Result2 will
contain a pointer to a result string,assuming that one was requested(and
available.)

If the primary result is non-zero,it represents either an error severity
level or else the return code from a command invocation. The two cases can
be distinguished by examining the secondary result. If the secondary field
is also non-zero,an error occurred and the secondary field is an ARexx error
code. If the secondary result is zero,then the primary result is the return
code passed by an "EXIT rc" or "RETURN rc" instruction in the program. The
application program can use this return code either as an error indication or
to initiate some particular processing action.

Result strings are always returned as an argstring and become the
property(that is,responsibility)of the host. When the string is no longer

Arexx 102 / 152

needed,it can be released using the DelArgstring() function.

Errors occurring in macro programs should usually be reported to the user.
Explanatory messages are available for all ARexx error codes,and can be
obtained by calling the ARexx Systems Library function ErrorMsg().

1.230 communicating with the resident process

All communications with the resident process are handled by passing message
packets,which were previously diagrammed in Table 10.2. The packet has a
command field that describes the action to be performed and parameter fields
that are specific to the command. Message packets are processed as they are
received,and are then either returned to the sender or passed along to
another process(in the case of a program invocation.) The packet includes two
result fields that are used to return error codes or result strings. The
parameter fields of the message packet may contain either(long)integer values
or pointers to argument strings. String arguments are assumed to be
argstring pointers unless otherwise specified.

1.231 command(action)codes

The command codes that are currently implemented in the resident process are
described below. Commands are listed by their mnemonic codes,followed by the
valid modifier flags. The final code value is always the logical OR of the
code value and all of the modifier flags selected. The command code is
installed in the rm_Action field of the message packet.

USAGE: RXADDCON [RXFB_NONRET]
This code specifies an entry to be added to the Clip List. Parameter slot
ARGO points to the name string,slot ARG1 points to the value string,and slot
ARG2 contains the length of the value string.

The name and value arguments do not need to be argstrings,but can be just
pointers to storage areas. The name should be a null-terminated string,but
the value can contain arbitrary data including nulls.

USAGE: RXADDFH [RSFB_NONRET]
This action code specifies a function host to be added to the Library List.
Parameter slot ARGO points to the(null-terminated)host name string,and slot
ARG1 holds the search priority for the node. The search priority should be
an integer between 100 and -100 inclusive;the remaining priority ranges are
reserved for future extensions. If a none already exists with the same
name,the packet is returned with a warning level error code. Note that no
test is made at this time as to whether the host port exists.

USAGE:RXADDLIB [RXFB_NONRET]
This code specifies an entry to be added to the Library List. Parameter slot
ARGO points to a null-terminated name string referring either to a function
library or a function host. Slot ARG1 is the priority for the node and
should be an integer between 100 and -100 inclusive;the remaining priority
ranges are reserved for future extensions. Slot ARG2 contains the entry oint
offset and slot ARG3 is the library version number. If a node already exists

Arexx 103 / 152

with the same name,the packet is returned with a warning level error code.
Otherwise,a new entry is added and the library or host becomes available to
ARexx programs. Note that no test is made at this time as to whether the
library exists and can be opened.

USAGE:RXCOMM [RXFB_TOKEN] [RXFB_STRING] [RXFB_RESULT] [RXFB_NOIO]
Specifies a command-mode invocation of an ARexx program. Parameter slot ARGO
must contain an argstring ointer to the command string. The RXFB_TOKEN flag
specifies that the command line is to be tokenized before being passed to the
invoked program. The RXFB_STRING flag bit indicates that the command string
is a "string file." Command invocations do not normally return result
strings,but the RXFB_RESULT flag can be set if the caller is prepared to
handle the cleanup associated with a returned string. The RXFB_NOIO modifier
suppresses the inheritance of the host’s input and output streams.

USAGE:RXFUNC [RXFB_RESULT] [RXFB_STRING] [RXFB_NOIO] argcount
This command code specifies a function invoction. Parameter slot ARGO
contains a pointer to the function name string,and slots ARG1 through ARG15
point to the argument strings,all of which must be passed as argstrings. The
lower byte of the command code is the argument count;this count excludes the
function name string itself. Function calls normally set the RXFB_RESULT
flag,but this is not mandatory. The RXFB_STRING modifier indicates that the
function name string is actually a "string file". The RXFB_NOIO modifier
suppresses the inheritance of the host’s input and output streams.

USAGE:RXREMCON [RXFB_NONRET]
This code requests that an entry be removed from the Clip List. Parameter
slot ARGO points to the null-terminated name to be removed. The Clip List is
searched for a node matching the supplied name,and if a match is found the
list node is removed and recycled. If no match is found the packet is
returned with a warning error code.

USAGE:RXREMLIB [RXFB_NONRET]
This command removes a Library List entry. Parameter slot ARGO points to the
null terminated string specifying the library to be removed. The Library
List is searched for a node matching the library name,and if a match is found
the node is removed and released. If no match is found the packet is
returned with a warning error code. The libary node will not be removed if
the library is currently being used by an ARexx program.

USAGE:RXTCCLS [RXFB_NONRET]
This code requests that the global tracing console be closed. The console
window will be closed immediately unless one or more ARexx programs are
waiting for input from the console. In this event,the window will be closed
as soon as the active programs are no longer using it.

USAGE:RXTCOPN [RXFB_NONRET]
This command requests that the global tracing console be opened. Once the
console is open,all active ARexx programs will divert their tracing output to
the console. Tracing input(for interactive debugging)will also be diverted
to the new console. Only one console can be opened;subsequent RXTCOPN
requests will be returned with a warning error message.

1.232 modifier flags

Arexx 104 / 152

Command codes may include modifier flags to select various processing
options. Modifier flags are specific to certain commands,and are ignored
otherwise.

RXFB_NOIO. This modifier is used with the RXCOMM and RXFUNC command codes to
suppress the automatic inheritance of the host’s input and output streams.

RXFB_NONRET. Specifies that the message packet is to be recycled by the
resident process rather than being returned to the sender. This implies that
the sender doesn’t care about whether the requested action succeeded,since
the returned packet provides the only means of acknowledgement. Messge
packets are released using the library function DeleteRexxMsg().

RXFB_RESULT. This modifer is valid with the RXCOMM and RXFUNC commands,and
requests that the called program return a result string. If the program
EXITs(or RETURNs)with an expression,the expression result is returned to the
caller as an argstring. It is then the caller’s responsibility to release
the argstring when it is no longer needed;this can be done using the library
function DeleteArgstring().

RXFB_STRING. This modifer is valid with the RXCOMM and RXFUNC command codes.
It indicates that the command or function argument(in slot ARGO)is a "string
file" rahter than a file name.

RXFB_TOKEN. This flag is used with the RXCOMM code to request that the
command string be completely tokenized before being passed to the invoked
program. Programs invoked as commands normally have only a single argument
string. The tokenization process uses "white space" to separate the
tokens,except within quoted strings. Quoted strings can use either single or
double quotes,and the end of the command string(a null character)is
considered as an implicit closing quote.

1.233 unnamed.3

The resident process uses the standard command-level conventions for the
primary return code installed in rm_Result1. Minor or warning errors are
indicated by a value of 5,and more serious errors are returned as values of
10 or 20. The secondary result field rm-Result2 will either be zero or an
ARexx error code if applicable.

Note that RXCOMM and RXFUNC messages are returned directly by the invoked
macro program,rathe than by the residen process.

1.234 unnamed.4

ARexx supports external function libraries as a mechanism for user-defined
extensions to the language. Function libraries may be written and maintained
by users or applications developers.

Arexx 105 / 152

1.235 design considerations

There are several different purposes for which a function library might be
designed. In the simplest case,a library could be used to extend the string
manipulation or mathematical capabilities of the language by defining new
functions. Such a library could be entirely self-contained or might call
other system libraries to perform specific operations.

Another alternative would be to build a library that interacts closely with
an external applications program. This could allow specific operations in
the host application to be performed as function calls rather than as
commands. There are several advantages to this approach,as it avoids the
need to parse command strings and does not require the multiple task context
changes associated with message-passing. The library might include entry
points for specific operaions as well as functions to support processing
required by the applications program.

Function libraries can also serve as bridges to other system or applications
libraries. For example,if a program needed to call the functions in a
graphics library,a bridge library could be built to match the function names
in the program with the appropriate entry point in the graphics library. A
related possibility would be to use ARexx as a test driver for a program
under development. Once the query table and parameter passing mechanisms for
the function library have been built,new routines under development could be
tested by just adding a table entry. Since building test programs is ofter
very time- consuming,the flexibility and interactive debugging capabilities
of ARexx make it an attractive alternative to compiled languages like "C."

Regardless of the intended application,all function libraries share a common
structure. The initial design follows that of the standard EXEC shared
library, with the three required entry points Open,Close,and Expunge,plus a
reserved slot. The library must also have a "query" entry point,which serves
to match the name supplied by ARexx with the intended function.
Typically,this will consist of a table of function names and a routine to
search for the specified one.

REENTRANCY. Functions libraries should be designed to be fully
reentrant,since any number of ARexx programs may be running at any time. If
this is not feasible due to other design constraints,the query function
should include a lockout mechanism to prevent multiple calls to the library
routines.

1.236 calling convention

The library’s query function will be called from the interpreter’s context
with the address of a message packet in register A0 and the library base in
A6. The structure of the message packet is the same as that in Table
10.2,but note that although a message packet is used to carry the
arguments,it is not queued at a message port and does not need to be
unlinked. The name of the function to be called is carried in the ARGO
parameter slot. The query function must search for this function name and,if
the name cannot be found,must return an error code of 1("Program not
found")in register D0. The library will then be closed and the search
continued in the next function library. The query function should not modify

Arexx 106 / 152

any fields within the message packet,as it must be passed along to the next
library until the function is located.

1.237 parameter conversion

Once the requested function has been found,the query funcion may need to
transform the parameters passed by ARexx into the form expected by the
function. Whether the parameter strings need to be converted depends on how
they are to be used. In some cases it may be sufficient just to foward a
pointer to the message packet to the called function,while in other cases the
query function may need to load parameters into registers or to perform
conversion operations. The parameters in ARG1-ARG15 are always passed as
argstrings,and may be treated like a pointer to a null-terminated string.
Further attributes are stored at negative offsets from the argstring pointer,
and may be helpful in working with the string.

Numeric quantities are passed as strings of ASCII characters and will need to
be converted to integer or floating-point format if arithmetic calculations
are to be performed. The ARexx System Library includes a limited set of
functions to do parameter conversions.

The actual parameter count can be obtained from the low-order byte of the
rm_Action field in the message packet. The count never includes the function
name itself(in ARGO),but does include arguments specified as "defaults." Such
arguments will have a zero value in the corresponding parameter slot.

Note that the parameter block of the message packet,containing the fields
ARG0-ARG15,is structured like the argument array expected by the main(argc,
argv)function of a "C" program. This suggests a simple way that a function
library could provide a bridge to a series of "C" programs. The query
function would need only to determine the address of the called function,and
then push the parameter block address and argument count onto the program
stack.

1.238 returned values

Each library function must return an error code and a value string. The
error code is returned in register D0,and should be 0 if no errors occurred.
The value string must be returned as an argstring pointer in register
A1,unless D0 indicates that an error occurred during the call. The
mechanisms for creating the proper return values can be made part of the
query function,so that all functions in the library share a common return
path.

1.239 direct manipulation of data structures

All of the data structures maintained by the resident process are built into
the ARexx Systems Library base and are therefore accessible to external
programs. The Task List in the RexxBase structure links the global data
structures for all currently active ARexx programs. This linkage uses the

Arexx 107 / 152

node contained in the message port of the RexxTask structure,rather than at
the head of the structure. The RexxTask structure is the global data
structure and initial storage environment for the ARexx program,and all
descendant storage environments are linked into the Environment List. The
linkage of internal data structures is such that the complete internal state
of all ARexx programs can be reached starting from the library base pointer.

Two library functions,LockRexxBase() and UnlockRexxBase(),are provided to
mediate access to the global structures. The structure base should be locked
before reading any of the data items or traversing any of the lists. The
present version of these functions provides only a global lock,but future
extensions will allow individual resources to be locked.

In general it should not be necessary to manipulate directly any of these
data structures. Functions have been provided in the ARexx Systems Library
to perform all of the operations required to interface external program to
the ARexx system. It is therefore recommended that applictions developers
avoid using any of the internal structures except as provided through the
library functions.

1.240 error1

ERROR: 1 SEVERITY: 5 MESSAGE: PROGRAM NOT FOUND
The named program could not be found,or was not an ARexx program. ARexx
programs are expected to start with a "/*" sequence. This error is detected
by the external interface and cannot be trapped by the SYNTAX interrupt.

1.241 error2

ERROR: 2 SEVERITY: 10 MESSAGE: EXECUTION HALTED
A control-C break or an external half request was received and the program
terminated. This error will be trapped if the HALT interrupt has been
enabled.

1.242 error3

ERROR: 3 SEVERITY: 20 MESSAGE: INSUFFICIENT MEMORY
The interpreter was unable to allocate enough memory for an operation. Since
memory space is required for all parsing and execution operations,this error
cannot usually be trapped by the SYNTAX interrupt.

1.243 error4

ERROR: 4 SEVERITY: 10 MESSAGE: INVALID CHARACTER
A non-ASCII character was found in the program. Control codes and other non-
ASCII characters may be used in a program by defining them as hex or binary
strings. This is a scan phase error and cannot be trapped by the SYNTAX
interrupt.

Arexx 108 / 152

1.244 error5

ERROR: 5 SEVERITY: 10 MESSAGE: UNMATCHED QUOTE
A closing single or double quote was missing. Check that each string is
properly delimited. This is a scan phase error and cannot be trapped by the
SYNTAX interrupt.

1.245 error6

ERROR: 6 SEVERITY: 10 MESSAGE: UNTERMINATED COMMENT
The closing "*/" for a comment field was not found. Remember that comments
may be nested,so each "/*" must be matched by a "*/." This is a scan phase
error and cannot be trapped by the SYNTAX interrupt.

1.246 error7

ERROR: 7 SEVERITY: 10 MESSAGE: CLAUSE TOO LONG
A clause was too long for the internal buffer used as temporary storage. The
source line in question should be broken into smaller parts. This is a scan
phase error and cannot be trapped by the SYNTAX interrupt.

1.247 error8

ERROR: 8 SEVERITY: 10 MESSAGE: INVALID TOKEN
An unrecognized lexical token was found,or a clause could not be properly
classified. This is a scan phase error and cannot be trapped by the SYNTAX
interrupt.

1.248 error9

ERROR: 9 SEVERITY: 10 MESSAGE: SYMBOL OR STRING TOO LONG
An attempt was made to create a string longer than the maximum supported by
the interpreter. The implementation limits for internal structure are given
in Appendix B.

1.249 error10

ERROR: 10 SEVERITY: 10 MESSAGE: INVALID MESSAGE PACKET
An invalid action code was found in a message packet sent to the ARexx
resident process. The packet was returned without being processed. This
error is detected by the external interface and cannot be trapped by the
SYNTAX interrupt.

Arexx 109 / 152

1.250 error11

ERROR: 11 SEVERITY: 10 MESSAGE: COMMAND STRING ERROR
A command string could not be processed. This error is detected by the
external interface and cannot be trapped by the SYNTAX interrupt.

1.251 error12

ERROR: 12 SEVERITY: 10 MESSAGE: ERROR RETURN FROM FUNCTION
An external function returned a non-zero error code. Check that the correct
parameters were supplied to the function.

1.252 error13

ERROR: 13 SEVERITY: 10 MESSAGE: HOST ENVIRONMENT NOT FOUND
The message port corresponding to a host address string could not be found.
Check that the required external host is active.

1.253 error14

ERROR: 14 SEVERITY: 10 MESSAGE: REQUESTED LIBRARY NOT FOUND
An attempt was made to open a function library included in the Library
List,but the library could not be opened. Check that the correct name and
version of the library were specified when the library was added to the
resource list.

1.254 error15

ERROR: 15 SEVERITY: 10 MESSGE: FUNCTION NOT FOUND
A function was called that could not be found in any of the currently
accessible libraries,and could not be located as an external program. Check
that the appropriate function libraries have been added to the Libraries
List.

1.255 error16

ERROR: 16 SEVERITY: 10 MESSAGE: FUNCTION DID NOT RETURN VALUE
A function was called which failed to return a result string,but did not
otherwise report an error. Check that the function was programmed
correctly,or invoke it using the CALL instruction.

Arexx 110 / 152

1.256 error17

ERROR: 17 SEVERITY: 10 MESSAGE: WRONG NUMBER OF ARGUMENTS
A call was made to a function which expected more(or fewer)arguments. This
error will be generated if a Built-In or external function is called with
more arguments than can be accomodated in the message packet used for
external communications.

1.257 error18

ERROR: 18 SEVERITY: 10 MESSAGE: INVALID ARGUMENT TO FUNCTION
An inappropriate argument was supplied to a function,or a required argument
was missing. Check the parameter requirements specified for the function.

1.258 error19

ERROR: 19 SEVERITY: 10 MESSAGE: INVALID PROCEDURE
A PROCEDURE instruction was issued in an invalid context. Either no internal
functions were active,or a PROCEDURE had already been issued in the current
storage environment.

1.259 error20

ERROR: 20 SEVERITY: 10 MESSAGE: UNEXPECTED THEN OR WHEN
A WHEN or THEN instruction was executed outside of a valid context. The WHEN
instruction is valid only within a SELECT range,and THEN must be the next
instruciton following an IF or WHEN.

1.260 error21

ERROR: 21 SEVERITY: 10 MESSAGE: UNEXPECTED ELSE OR OTHERWISE
An ELSE or OTHERWISE was found outside of a valid context. The OTHERWISE
instruction is valid only within a SELECT range. ELSE is valid only
following the THEN branch of an IF range.

1.261 error22

ERROR: 22 SEVERITY: 10 MESSAGE: UNEXPECTED BREAK,LEAVE,or ITERATE
The BREAK instruction is valid only within a DO range or inside an
INTERPRETed string. The LEAVE and ITERATE instuctions are valid only within
an iterative DO range.

Arexx 111 / 152

1.262 error23

ERROR: 23 SEVERITY: 10 MESSAGE: INVALID STATEMENT IN SELECT
A invalid statement was encountered within a SELECT range. Only
WHEN,THEN,and OTHERWISE statements are valid within a SELECT range,except for
the conditional statements following THEN or OTHERWISE clauses.

1.263 error24

ERROR: 24 SEVERITY: 10 MESSAGE: MISSING OR MULTIPLE THEN
An expected THEN clause was not found,or another THEN was found after one had
already been executed.

1.264 error25

ERROR: 25 SEVERITY: 10 MESSAGE: MISSING OTHERWISE
None of the WHEN clauses in a SELECT succeeded,but no OTHERWISE clause was
supplied.

1.265 error26

ERROR: 26 SEVERITY: 10 MESSAGE: MISSING OR UNEXPECTED END
The program source ended before an END was found for a DO or SELECT
instruction or an END was encountered outside of a DO or SELECT range.

1.266 error27

ERROR: 27 SEVERITY: 10 MESSAGE: SYMBOL MISMATCH
The symbol specified on an END,ITERATE,or LEAVE instruction did not match the
index variable for the associated DO range. Check that the active loops have
been nested properly.

1.267 error28

ERROR: 28 SEVERITY: 10 MESSAGE: INVALID DO SYNTAX
An invalid DO instruction was executed. An initializer expression must be
given if a TO or BY expression is specified,and a FOR expression must yield a
non- negative integer result.

Arexx 112 / 152

1.268 error29

ERROR: 29 SEVERITY: 10 MESSAGE: INCOMPLETE IF OR SELECT
An IF or SELECT range ended before all of the required statement were found.
Check whether the conditional statement following a THEN,ELSE,or OTHERWISE
clause was omitted.

1.269 error30

ERROR: 30 SEVERITY: 10 MESSAGE: LABEL NOT FOUND
A label specified by a SIGNAL instruction,or implicitly referenced by an
enabled interrupt,could not be found in the program source. Labels defined
dynamically by an INTERPRET instruction or by interactive input are not
included in the search.

1.270 error31

ERROR: 31 SEVERITY: 10 MESSAGE: SYMBOL EXPECTED
A non-symbol token was found where only a symbol token is valid. The
DROP,END, LEAVE,ITERATE,and UPPER instructions may only be followed by a
symbol token,and will generate this error if anything else is supplied. This
message will also be issued if a required symbol is missing.

1.271 error32

ERROR: 32 SEVERITY: 10 MESSAGE: SYMBOL OR STRING EXPECTED
An invalid token was found in a context where only a symbol or string is
valid.

1.272 error33

ERROR: 33 SEVERITY: 10 MESSAGE: INVALID KEYWORD
A symbol token in an instruction clause was identified as a keyword,but was
invalid in the specific context.

1.273 error34

ERROR: 34 SEVERITY: 10 MESSAGE: REQUIRED KEYWORD MISSING
An instuction clause required a specific keyword token to be present,but it
was not supplied. For example,this messge will be issued if a SIGNAL ON
instruction is not followed by one of the interrupt keywords(e.g.SYNTAX.)

Arexx 113 / 152

1.274 error35

ERROR: 35 SEVERITY: 10 MESSAGE: EXTRANEOUS CHARACTERS
A seemingly valid statement was executed,but extra characters were found at
the end of the clause.

1.275 error36

ERROR: 36 SEVERITY: 10 MESSAGE: KEYWORD CONFLICT
Two mutually exclusive keywords were included in an instruction clause,or a
keyword was included twice in the same instruction.

1.276 error37

ERROR: 37 SEVERITY: 10 MESSAGE INVALID TEMPLATE
The template provided with an ARG,PARSE,or PULL instruction was not properly
constructed. Refer to Chapter 8 for a description of template structure and
processing.

1.277 error38

ERROR: 38 SEVERITY: 10 MESSAGE: INVALID TRACE REQUEST
The alphabetic keyword supplied with a TRACE instruction or as the argument
to the TRACE()Built-In function was not valid. Refer to Chapter 7 for the
valid TRACE options.

1.278 error39

ERROR: 39 SEVERITY: 10 MESSAGE: UNINITIALIZED VARIABLE
An attempt was made to use an uninitialized variable while the NOVALUE
interrupt was enabled.

1.279 error40

ERROR: 40 SEVERITY: 10 MESSAGE: INVALID VARIABLE NAME
An attempt was made to assign a value to a fixed symbol.

1.280 error41

Arexx 114 / 152

ERROR: 41 SEVERITY: 10 MESSAGE: INVALID EXPRESSION
An error was detected during the evaluation an expression. Check that each
operator has the correct number of operands,and that no extraneous tokens
appear in the expression. This error will be detected only in expressions
that are actually evaluated. No checking is performed on expressions in
clauses that are being skipped.

1.281 error42

ERROR: 42 SEVERITY: 10 MESSAGE: UNBALANCED PARENTHESE
An expression was found with an unequal number of opening and closing
parentheses.

1.282 error43

ERROR: 43 SEVERITY: 43 MESSAGE: NESTING LIMIT EXCEEDED
The number of subexpressions in an expression was greater than the maximum
allowed. The expression should be simplified by breaking it into two or more
intermediate expressions.

1.283 error44

ERROR: 44 SEVERITY: 10 MESSAGE: INVALID EXPRESSION RESULT
The result of an expression was not valid within its context. For
example,this messge will be issued if an increment or limit expression in a
DO instruction yields a non-numeric result.

1.284 error45

ERROR: 45 SEVERITY: 10 MESSAGE: EXPRESSION REQUIRED
An expression was omitted in a context where one is required. For
example,the SIGNAL instruction,if not followed by the keywords ON or OFF,must
be followed by an expression.

1.285 error46

ERROR: 46 SEVERITY: 10 MESSAGE: BOOLEAN VALUE NOT 0 OR 1
An expression result was expected to yield a boolean result,but evaluated to
something other than 0 or 1.

Arexx 115 / 152

1.286 error47

ERROR: 47 SEVERITY: 10 MESSAGE: ARITHMETIC CONVERSION ERROR
A non-numeric operand was used in a operation requiring numeric operands.
This message will also be generated by an invalid hex or binary string.

1.287 error48

ERROR: 48 SEVERITY: 10 MESSAGE: INVALID OPERAND
An operand was not valid for the intended operation. This message will be
generated if an attempt is made to divide by 0,or if a fractional exponent is
used in an exponentiation operation.

1.288 limits

Language definitions seldom include predefined limits to the program
structures that can be created. Only a few such restrictions were imposed in
implementing ARexx,and most of the internal structure are limited only by the
total amount of memory available. The current implementation limits are
listed below.

LENGTH OF STRINGS. Strings,symbol names,and value strings are limited to a
maximum length of 65,535 bytes.

LENGTH OF CLAUSES. Clauses are limited to a maximum of 800 characters after
removing comments and multiple blanks.

NODES IN COMPOUND NAMES. Compound symbol names may include a maximum of 50
nodes,including the stem.

ARGUMENTS TO FUNCTIONS. Built-In and external functions are limited to a
maximum of 15 arguments. There is no limit to the number of arguments that
may be passed to an internal function.

SUBEXPRESSION NESTING. The maximum nesting level for subexpressions is 32.

1.289 compatibility

ARexx departs in a few ways from the language definition. The differences
can be classified as omissions or extensions,and are described below.

OMISSIONS. The only significant specification of the language standard
omitted from this implementation is the arbitrary-precision arithmetic
facility. Arithmetic operations are limited to about 14 digits of
precision,and the FUZZ option is not implemented at all. Only the SCIENTIFIC
format is used for exponential notation. The full numeric capabilities will
be provided in a later release.

EXTENSIONS. The following extensions to the language standard have been

Arexx 116 / 152

included in this implementation:

BREAK INSTRUCTION. A new instruction called BREAK has been implemented. It
is used to exit from the scope of any DO or INTERPRET instruction.

ECHO INSTRUCTION. The ECHO instruction has been included as a synonym for
SAY.

SHELL INSTRUCTION. The SHELL instructiion has been included as a synonym for
ADDRESS.

SIGNAL OPTIONS. Several additional SIGNAL keywords have been implemented.
BREAK_C,BREAK_D,BREAK_E,and BREAK_F will detect and trap the control-C
through control-F signals passed by AmigaDOS. The IOERR keyword traps errors
detected by the I/O system.

STEM SYMBOLS. A stem symbol is valid anywhere that a simple symbol could be
employed.

TEMPLATE PROCESSING. Templates have been generalized in several ways.
Variable symbols may be used as positional tokens if preceded by an
operator;the "=" operator is used to denote an absolute position. Multiple
templates can be used with all source forms of the PARSE instruction.

1.290 functional groups

The library functions can be frouped into Conversion,Input/Output,Resource
Management,and String Manipulation functions.

DATA CONVERSION. These functions provide many of the common data-conversion
requirements.

INPUT/OUTPUT. Two levels of I/O support are provided. The low level
functions use DOS filehandles directly,while the higher-level functions use
linked lists of IoBuff structures and support logical file names.

RESOURCE. These functions allocate,release,or otherwise manage the data
structures used with ARexx.

STRING FUNCTIONS. All data in ARexx are managed as strings. These functions
provide some of the more common string-manipulation operations.

TABLE C.1 AREXX SYSTEMS LIBRARY FUNCTIONS

NAME FUNCTIONAL GROUP DESCRIPTION
AddClipNode Resource Allocate a Clip node
ClearMem Resource Clear a block of memory
ClearRexxMsg Resource Release argstrings from message
CloseF Input/Output Close a file buffer
ClosePublicPort Resource Close a port resource node
CmpString String Compare string structures for equality
CreateArgstring Resource Create an argstring structure
CreateDOSPkt Input/Output Creata a DOS Standard Packet
CreateRexxMsg Resource Create a message packet
CurrentEnv Resource Get current storage environment

Arexx 117 / 152

CVa2i Conversion ASCII to integer
CVc2x Conversion Character to Hex or Binary digits
CVi2a Conversion Integer to ASCII
CVi2arg Conversion Integer to ASCII argstring
CVi2az Conversion Integer to ASCII,leading zeroes
CVs2i Conversion String structure to integer
CVx2c Conversion Hex or binary digits to binary
DeleteArgstring Resource Release an argstring structure
DeleteDOSPkt Input/Output Release a DOS Standard Packet
DeleteRexxMsg Resource Release a message packet
DOSRead Input/Output Read from a DOS filehandle
DOSWrite Input/Output Write to a DOS filehandle
ErrorMsg Conversion Get error message from error code
ExistF Input/Output Check whether a DOS file exists
FillRexxMsg Resource Convert and install argstrings
FindDevice Input/Output Locate a DOS device node
FindRsrcNode Resource Locate a resource node
FreePort Resource Close a message port
FreeSpace Resource Release internal memory
GetSpace Resource Allocate internal memory
InitList Resource Initialize a list header
InitPort Resource Initialize a message port
IsRexxMsg Resource Test a message packet
LengthArgstring Resource Get length of argstring
ListNames Resource Copy node names to an argstring
OpenF Input/Output Open a file buffer
OpenPublicPort Resource Allocate and open a port resource node
QueueF Input/Output Queue a line in a file buffer
ReadF Input/Output Read from a file buffer
ReadStr Input/Output Read a string from a file buffer
RemClipNode Resource Release a Clip node
RemRsrcList Resource Release a resource list
RemRsrcNode Resource Release a resource node
SeekF Input/Output Reposition a file buffer
StackF Input/Output Stack a line in a file buffer
StcToken String Break out a token
StrcmpN String Compare strings
StrcpyA String Copy a string,converting to ASCII
StrcpyN String Copy a string
StrCpyU String Copy a string,converting to uppercase
StrflipN String Reverse characters in a string
Strlen String Find length of a string
ToUpper Conversion ASCII to uppercase
WriteF Input/Output Write to a file buffer

1.291 library functions

The following descriptions of the ARexx Systems Library functions ←↩
are listed

alphabetically. The required arguments and register assignments are shown in
parentheses after the function name. Multiple returns are shown in
parentheses on the left-hand side of the call.

AddClipNode()

Arexx 118 / 152

CVs2i()

FreeSpace()

RemRsrcList()

AddRsrcNode()

CVx2c()

GetSpace()

RemRsrcNode()

ClearMem()

CurrentEnv()

InitList()

SeekF()

ClearRexxMsg()

DeleteArgstring()

InitPort()

StackF()

CloseF()

DeleteDOSPkt()

IsRexxMsg()

StcToken()

ClosePublicPort()

DeleteRexxMsg()

IsSymbol()

StrcpyA()

CmpString()

DOSREAD()

ListNames()

StrcpyN()

CreateArgstring()

Arexx 119 / 152

DOSWrite()

LockRexxBase()

StrcpyU()

CreateDOSPkt()

ErrorMsg()

OpenF()

StrflipN()

CreateRexxMsg()

ExistF()

OpenPublicPort()

Strlen()

CVa2i()

FillRexxMsg()

QueueF()

StrcmpN()

CVc2x()

FindDevice()

ReadF()

ToUpper()

CVi2arg()

FindRsrcNode()

ReadStr()

UnlockRexxBase()

CVi2az()

FreePort()

RemClipNode()

WriteF()

Arexx 120 / 152

1.292 addclipnode

AddClipNode()-allocate and link a Clip node
Usage:node=AddClipNode(list,name,length,value)

D0 A0 A1 D0 D1
A0

(CCR)

Allocates and links a Clip node into the specified list. Clip nodes are
resource nodes containing a name and value string,and include an
"auto-delete" function for simple maintenance. The list argument must point
to a properly- initialized EXEC list header. The name argument points to a
null-terminated name string,the value argument is a pointer to a storage
area,and the length argument is its length in bytes. The returned value is a
pointer to the allocated node,or 0 if the allocation failed.

The RemClipNode()function is installed as the "auto-delete" function for each
node. Clip nodes can be intermixed with other resource nodes in a list and
then released with a single call to RemRsrcList().

See Also:
RemClipNode()
,
RemRsrcList()
,
RemRsrcNode()

1.293 addrsrcnode

AddRsrcNode()-allocate and link a resource node
Usage:node=AddRsrcNode(list,name,length)

D0 A0 A1 D0
A0

(CCR)

Allocates and links a resource node(a RexxRsrc structure)to the specified
list. The name argument is a pointer to a null-terminated string,a copy of
which is installed in the node structure. The length argument is the total
length for the node;this length is saved within the node so that it may be
released later. The returned value is a pointer to the allocated node,or 0
if the allocation failed.

See Also:
RemRsrcList()
,
RemRsrcNode()

1.294 clearmem

ClearMem()-clear a block of memory
Usage:ClearMem(address,length)

A0 D0

Arexx 121 / 152

Clears a block of memory beginning at the given address for the specified
length in bytes. The address must be word-aligned and the length must be a
multiple of 4 bytes;all structures allocated by ARexx meet these
restrictions. Register A0 is preserved.

1.295 clearrexxmsg

ClearRexxMsg()-release argument strings
Usage:ClearRexxMsg(msgptr,count)

A0 D0

Releases one or more argstrings from a message packet and clears the
corresponding slots. The count argument specifies the number of argument
slots to clear,and can be set to less than 16 to reserve some to the slots
for private use. No action is taken if the slot already contains a zero
value. See Also:

FillRexxMsg()

1.296 closef

CloseF()-close a file buffer
Usage:boolean=CloseF(IoBuff)

D0 A0

Release the IoBuff structure and closes the associated DOS file. CloseF()is
the "auto-delete" function for the IoBuff structure,so an entire list of file
buffers can be closed with a single call to RemRsrcList().

1.297 closepublicport

ClosePublicPort()-close a port resource node
Usage:ClosePublicPort(node)

A0

Unlinks and closes the message port and releases the resource node structure.
The node must have been allocated by the OpenPublicPort()function.

See Also:
OpenPublicPort()

1.298 cmpstring

CmpString()-compare string structures for equality
Usage:test=CmpString(ss1,ss2)

D0 A0 A1
(CCR)

Arexx 122 / 152

The arguments ss1 and ss2 must be pointers to ARexx string structures and are
compared for equality. String structures include the length and hash code of
the string,so the actual strings are not compared unless the lengths and hash
codes match. The return value sets the CCR and will be -1(True)if the
strings match and 0(False)otherwise.

1.299 createargstring

CreateArgstring()-create an argument string structure
Usage:argstring=CreateArgstring(string,length)

D0 A0 D0
A0

(CCR)

Allocates a RexxArg structure and copies the supplied string into it. The
argstring return is a pointer to the string buffer of the structure,and can
be treated like an ordinary string pointer. The RexxArg structure stores the
structure size and string length at negative offsets to the string pointer.
The string pointer can be set to NULL if only an uninitialized structure is
required.

See Also:
DeleteArgstring()

1.300 createdospkt

CreateDOSPkt()-allocate and initialize a DOS standard Packet.
Usage:packet = CreateDOSPkt()

D0
A0
(CCR)

Allocates a DOS StandardPacket structure and initializes it by interlinking
the EXEC message and the DOS packet substructures. No replyport is installed
in either the message or the packet,as these fields are generally filled in
just before the message is sent.

See Also:
DeleteDOSPkt()

1.301 createrexxmsg

CreateRexxMsg()-allocate an ARexx message packet
Usage: msgptr=CreateRexxMsg(replyport,extension,host)

D0 A0 A1 D0
A0

(CCR)

This function allocates an ARexx message packet from the system free memory

Arexx 123 / 152

list. The message packet consists of a standard EXEC message structure
extended to include space for function arguments,returned results,and
internal defaults. The replyport argument points to a public or private
message port and must be supplied,as it is required to return the message
packet to the sender. The extension and host arguments are pointers to
null-terminated strings that provide values for the default file extension
and the initial host address, respectively. Additional override fields in
the extended packet except for the primary and secondary result fields
rm_Result1 and rm_Result2.

See Also:
DeleteRexxMsg()

1.302 cva2i

CVa2i()-convert from ASCII to integer
Usage: (digits,value) = CVa2i(buffer)

D0 D1 A0

Converts the buffer of ASCII characters to a signed long integer value. The
scan proceeds until a non-digit character is found or until an overflow is
detected. The function returns both the number of digits scanned and the
converted value.

1.303 cvc2x

CVc2x()-convert(unpack)from character string to hex or binary ←↩
digits.

Usage: error = CVc2x(outbuff,string,length,mode)
D0 A0 A1 D0 D1

Converts the signed integer value argument to ASCII characters using the
supplied buffer pointer. The digits argument specifies the maximum number of
characters that will be copied to the buffer. The returned length is the
actual number of characters copied. The pointer return is the new buffer
pointer.

See Also:
CVi2az()

1.304 cvi2arg

CVi2arg()-convert from integer to argstring
Usage: argstring=CVi2arg(value,digits)

D0 D0 D1
A0

(CCR)

Converts the signed long integer value argument to ASCII characters,and
installs them in an argstring(a RexxArg structure). The returned value is an

Arexx 124 / 152

argstring pointer or 0 if the allocation failed. The allocated structure can
be released using DeleteArgstring().

1.305 cvi2az

CVi2az()-convert from integer to ASCII with leading zeroes
Usage: (length,pointer)=CVi2az(buffer,value,digits)

D0 A0 A0 D0 D1

Converts the signed long integer value argument to ASCII characters in the
supplied buffer,with leading zeroes to fill out the requested number of
digits. This function is identical to CVi2a except that leading zeroes are
supplied.

1.306 cvs2i

CVs2i()-convert from string structure to integer
Usage: (error,value)=CVs2i(ss)

D0 D1 A0

The ss argument must be a pointer to a string structure. It is converted to
a signed long integer value return. The error return code is 47("Arithmetic
conversion error")if the string is not a valid number.

1.307 cvx2c

CVx2c()-convert from hex or binary digits to(packed)string
Usage:error=CVx2c(outbuff,string,length,mode)

D0 A0 A1 D0 D1

Converts the string argument of hex(0-9,A-F)or binary(0,1)digits to the
packed binary representation. The mode argument specifies the(hex or
binary)conversion mode,and must be set to -1 for hex strings or 0 for binary
strings. Blank characters may be embedded in the string for readability,but
only at byte boundaries. The error return code is 47 if the string is not a
valid hex or binary string.

1.308 currentenv

CurrentEnv()-return the current storage environment
Usage:envptr=CurrentEnv(rxtptr)

D0 A0

Returns a pointer to the current storage environment associated with an
executing ARexx program. The rxptr argument is a pointer to the RexxTask
structure,and may be obtained from the message packet sent to an external
application.

Arexx 125 / 152

1.309 deleteargstring

DeleteArgstring()-delete(release)an argstring structure
Usage:DeleteArgstring(argstring)

A0

Releases an argstring (RexxArg) structure. The RexxArg structure contains
the total allocated length at a negative offset from the argstring pointer.
See Also:

CreateArgstring()

1.310 deletedospkt

DeleteDOSPkt()-release a DOS Standard Packet structure.
Usage:DeleteDOSPkt(message)

A0

Releases a DOS StandardPacket structure,typically obtained by a prior call to
CreateDOSPkt().
See Also:

CreateDOSPkt()

1.311 deleterexxmsg

DeleteRexxMsg()-delete(release)an ARexx message packet.
Usage:DeleteRexxMsg(packet)

A0

Release an ARexx message packet to the system free-memory list. The internal
MN-LENGTH field is used as the total size of the memory block to be
released,so this function can be used to release any message packet that
contains the total length in this field. Any embedded argument strings must
be released before calling DeleteRexxMsg().

See Also:
CreateRexxMsg()

1.312 dosread

DOSREAD()-read from a DOS file
Usage:count=DOSRead(filehandle,buffer,length)

D0 A0 A1 D0
(CCR)

Reads one or more characters from a DOS filehandle into the supplied buffer.
The length argument specifies the maximum number of characters that will be
read. The returned count is the actual number of bytes transferred,or -1 if
an error occurred.

Arexx 126 / 152

1.313 doswrite

DOSWrite()-write to a DOS file
Usage:count=DOSWrite(filehandle,buffer,length)

D0 A0 A1 D0
(CCR)

Writes a buffer of the specified length to a DOS filehandle. The retuned
count is the actual number of bytes written,or -1 if an error occurred.

1.314 errormsg

ErrorMsg()-find the message associated with an error code
Usage:(boolean,ss)=ErrorMsg(code)

D0 A0 D0

Returns the error message(as a pointer to a string structure)associated with
the specified ARexx error code. The boolean return will be -1 if the
supplied code was a valid ARexx error code,and 0 otherwise.

1.315 existf

ExistF()-check whether an external file exists
Usage:boolean=ExistF(filename)

D0 A0
(CCR)

Tests whether an external file currently exists by attempting to obtain a
read lock on the file. The boolean return indicates whether the operation
succeeded, and the lock is released.

1.316 fillrexxmsg

FillRexxMsg()-convert and install arguments in message packet.
Usage:boolean=FillRexxMsg(msgptr,count,mask)

D0 A0 D0 D1

This function can be used to convert and install up to 16 argument strings in
a RexxMsg structure. The message packet must be allocated and the argument
fields of interest set to either a pointer to a null-terminated string or an
integer value. The count argument specifies the number of fields,beginning
with ARGO,to be converted into argstrings and installed into the argument
slot. Bits 0-15 of the mask argument specify whether the corresponding
argument is a string pointer(bit clear)or an integer value(bit set).

The count argument is normally set to the exact number of strings to be
passed. By setting this count to less than 16,a number of the slots can be
reserved for private uses.

Arexx 127 / 152

The returned value is -1(True)if all of the arguments were successfully
converted. In the event of an allocation failure,all of the partial results
are released and a value of 0 is returned.

See Also:
ClearRexxMsg()

1.317 finddevice

FindDevice()-check whether a DOS device exists.
Usage:device=FindDevice(devicename,type)

D0 A0 D0
A0

(CCR)

Scans the DOS DeviceList for a device node of the specified type matching the
null-terminated name string. The acceptable values for the type argument are
the constants DLT_DEVICE,DLT_DIRECTORY,or DLT_VOLUME define in the DOS
INCLUDE files. Device names are conveted to uppercase before checking for a
match. The returned value is a pointer to the matched device node,or 0 if
the device was not found.

1.318 findrsrcnode

FindRsrcNode()-locate a resource node with the given name.
Usage:node=FindRsrcNode(list,name,type)

D0 A0 A1 D0
A0

(CCR)

Searchs the specified list for the first node of the selected type with the
given name. The list argument must be a pointer to a properly-initialized
EXEC list header. The name argument is a pointer to a null-terminated
string. If the type argument is 0,all nodes are selected;otherwise,the
supplied type must match the LN_TYPE field of the node. The returned value
is a pointer to the node or 0 if no matching node was found.

1.319 freeport

FreePort()-release resources associated with a message port
Usage:FreePort(port)

A0

This function deallocates the signal bit associated with a message port and
marks the port as "closed." The task calling FreePort()must be the same one
that initialized the port,since signal bit allocations are specific to a
task. The memory space associated with the port is not released.

See Also:
InitPort()

Arexx 128 / 152

1.320 freespace

FreeSpace()-releases space to the internal memory allocator.
Usage:FreeSpace(envptr,block,length)

A0 A1 D0

Returns a block of memory to the internal allocator,which must have been
obtained from a call to GetSpace(). The envptr argument is a pointer to the
base or current storage environment.

See Also:
CurrentEnv()
,
GetSpace()

1.321 getspace

GetSpace()-allocate memory using the internal allocator.
Usage:block=GetSpace(envptr,length)

D0 A0 D0
A0
(CCR)

Allocates a block of memory using the internal allocator. The memory is
obtained from an internal pool managed by the interpreter and is returned to
the operating system when the ARexx program terminates. The envptr argument
is a pointer to the base or current storage environment for the program.

The internal allocator must be used to allocate strings for use as values for
symbols,and is convenient for obtaining small blocks of memory whose lifetime
will not exceed that of the ARexx program.

See Also:
CurrentEnv()
,
FreeSpace()

1.322 initlist

InitList()-initialize a list header
Usage:InitList(list)

A0

Initializes an EXEC list header structure.

1.323 initport

InitPort()-initialize a previously-allocated message port.
Usage:(signal,port)=InitPort(port,name)

Arexx 129 / 152

D0 A1 A0 A1

Initializes a message port structure for which memory space has been
previously allocated,typically as part of a larger structure or as static
storage in a program. It installs the task ID(of the task calling the
function)into the MP_SIGTASK field and allocates a signal bit. The name
parameter must be a pointer to a null-terminated string. The signal return
is the signal bit that was allocated for the port. In the event that a
signal could not be assigned,a value of -1 is returned.

Note that the port is not linked into the system Ports List. If the port is
to be made public,this can be done after the function returns. The port
address is returned in the correct register(A1)for a subsequent call to the
EXEC function AddPort().

See Also:
FreePort()

1.324 isrexxmsg

IsRexxMsg()-check whether a message came from ARexx.
Usage:boolean=IsRexxMsg(msgptr)

D0 A0

Tests whether the message packet specified by the msgptr argument came from
an ARexx program. ARexx marks its messages with a pointer to a static string
"REXX" in the LN_NAME field. The returned value is either -1(True)if the
message came from ARexx or 0(False)otherwise.

1.325 issymbol

IsSymbol()-check whether a string is a valid symbol.
Usage:(code,length)=IsSymbol(string)

D0 D1 A0

Scans the supplied string pointer for ARexx symbol characters. The code
return is the symbol type if a symbol was found,or 0 if the string did not
start with a symbol character. The length return is the total length of the
symbol.

1.326 listnames

ListNames()-build a string of names from a list.
Usage:argstring=ListNames(list,separator)

D0 A0 D0[0:7]
A0

(CCR)

Scans the specified list and copies the name strings into an argstring. The
list argument must be a pointer to an initialized EXEC list header. The

Arexx 130 / 152

separator argument is the character,possibly a null,to be placed as a
delimiter between the node names.

The list is traversed inside a Forbid()exclusion and so may be used with
shared or system lists. The returned argstring can be released using
DeleteArgstring() after the names are no longer needed.

See Also:
DeleteArgstring()

1.327 lockrexxbase

LockRexxBase()-lock a shared resource.
Usage:LockRexxBase(resource)

D0

Secures the specified resource in the ARexx Systems Library base for read
access. The resource argument is a manifest constant for the required
resource, or zero to lock the entire structure.

Note that write access to shared resources is normally mediated by the ARexx
resident process,which operates at an elevated priority to gain exclusive
access. Locking a resource should not be attempted from a process operating
at a priority higher than the resident process.

See Also:
UnlockRexxBase()

1.328 openf

OpenF()-open a file buffer
Usage:IoBuff=OpenF(list,filename,mode,logical)

D0 A0 A1 D0 D1
A0

(CCR)

Attempts to open an external file in the specified mode,which should be one
of the constants RXIO_READ,RXIO_WRITE,or RXIO_APPEND defined in the ARexx
INCLUDE files.

If successful,an IoBuff structure is allocated and linked into the specified
list. The list argument must be a pointer to a properly-initialized EXEC
list header.

The optional logical argument is the logical name for the file,and must be
either a pointer to a null-terminated string or zero(NULL)if a name is not
required.

See Also:
CloseF()

Arexx 131 / 152

1.329 openpublicport

OpenPublicPort()-open a public message port
Usage:node=OpenPublicPort(list,name)

D0 A0 A1
A0
(CCR)

Allocates a message port as an "auto-delete" resource node and links it into
the specified list. The list argument must point to a properly initialized
EXEC list header. The message port is initialized with the given name and
linked into the system Ports List.

See Also:
ClosePublicPort()

1.330 queuef

QueueF()-queue a line to a file buffer.
Usage:count-=QueueF(IoBuff,buffer,length)

D0 A0 A1 D0

Queues a buffer of characters in the stream associated with the IoBuff
structure. The stream must be managed by a DOS handler that supports the
ACTION_QUEUE packet.

Queued lines are placed in "first-in,first-out" order and are immediately
available to be read from the stream. The buffer argument is a pointer to a
string of characters,and the length specifies the number of characters to be
queued. The return value is the actual count of characters or -1 if an error
occurred.

See Also:
StackF()

1.331 readf

ReadF()-read characters from a file buffer
Usage:count=ReadF(IoBuff,buffer,length)

D0 A0 A1 D0
(CCR)

Reads one or more characters from the file specified by the IoBuff pointer.
The buffer argument is a pointer to a storage area,and the length argument
specifies the maximum number of characters to be read. The return value is
the actual number of characters read,or -1 if an error occurred.

1.332 readstr

Arexx 132 / 152

ReadStr()-read a string from a file
Usage:(count,pointer)=ReadStr(IoBuff,buffer,length)

D0 A1 A0 A1 D0

Reads characters from the file specified by the IoBuff pointer until a
"newline" character is found. The "newline" is not included in the returned
string. The return value is the actual number of characters read,or -1 if an
error occurred.

See Also:
ReadF()

1.333 remclipnode

RemClipNode()-unlink and deallocate a list Clip node.
Usage:RemClipNode(node)

A0

Unlinks and releases the specified Clip node. The function is the
"auto-delete" function for Clip nodes,and will be called automatically by
RemRsrcNode() or RemRsrcList().

See Also:
AddClipNode()
,
RemRsrcList()
,
RemRsrcNode()

1.334 remrsrclist

RemRsrcList()-unlink and deallocate a list of resource nodes
Usage:RemRsrcList(list)

A0

Scans the supplied list and releases any nodes found. The list must consist
of resource nodes(RexxRsrc structures),which contain information to allow
automatic cleanup and deletion.

See Also:
RemRsrcNode()

1.335 remrsrcnode

RemRsrcNode()-unlink and deallocate a resource node
Usage:RemRsrcNode(node)

A0

Unlinks and releases the specified resource node,including the name string if

Arexx 133 / 152

one is present. If an "auto-delete" function has been specified in the
node,it is called to perform any required resource deallocation before the
node is released.

See Also:
RemRsrcList()

1.336 seekf

SeekF()-seek to the specified position in a file.
Usage:position=SeekF(IoBuff,offset,anchor)

D0 A0 D0 D1

Seeks to a new position in the file is specified by the IoBuff pointer. The
position is given by the offset argument,a byte offset relative to the
supplied anchor argument. The anchor may specify the beginning(-1),the
current position (0),or the end of the file(1). The return value is the new
position relative to the beginning of the file.

1.337 stackf

StackF()-stack a line to a file buffer.
Usage:count=StackF(IoBuff,buffer,length)

D0 A0 A1 D0

Stacks a buffer of characters in the stream associated with the IoBuff
structure. The buffer argument is a pointer to a string of characters,and
the length specifies the number of characters to be stacked. The return
value is the actual count of characters to be stacked. The return value is
the actual count of characters or -1 if an error occurred.

Stacked lines are placed in "last-in,first-out" order and are immediately
available to be read from the stream. The stream must be managed by a DOS
handler that supports the ACTION_STACK packet.

See Also:
QueueF()

1.338 stctoken

StcToken()-break out the next token from a string
Usage:(quote,length,scan,token)=StcToken(string)

D0 D1 A0 A1 A0

Scans a null-terminated string to select the next token delimited by "white
space,"and returns a pointer to the start of the token. The quote return
will be an ASCII single or double quote if the token was quoted and 0
otherwise; white space characters are ignored within quoted strings. The
length return is the total length of the token,including any quote
characters. The scan return is advanced beyond the current token to prepare

Arexx 134 / 152

for the next call.

1.339 strcpya

StrcpyA()-copy a string,converting to ASCII
Usage:hash=StrcpyA(destination,source,length)

D0 A0 A1 D0

Copies the source string to the destination area,converting the characters to
ASCII by clearing the high-order bit of each byte. The length of the string
(which may include embedded nulls)is considered as a 2-byte usingned integer.
So the string is limited in length to 65,535 bytes. The hash return is the
internal hash byte for the copied string.

See Also:
StrcpyN()
,
StrcpyU

1.340 strcpyn

StrcpyN()-copy a string
Usage:hash=StrcpyN(destination,source,length)

D0 A0 A1 D0

Copies the source string to the destination area. The length of the string
(which may include embedded nulls)is considered as a 2-byte unsigned integer.
The hash return is the internal hash byte for the copied string.

See Also:
StrcpyA()
,
StrcpyU

1.341 strcpyu

StrcpyU()-copy a string,converting to uppercase
Usage:hash=StrcpyU(destination,source,length)

D0 A0 A1 D0

Copies the source string to the destination area,converting to uppercase
alphabetics. The length of the string(which may include embedded nulls)is
considered as a 2-byte unsigned integer. The has return is the internal hash
byte for the copied string.

See Also:
StrcpyA()
,
StrcpyN

Arexx 135 / 152

1.342 strflipn

StrflipN()-reverse the characters in a string
Usage:StrflipN(string,length)

A0 D0

Reverses the sequence of characters in a string. The conversion is performed
in place.

1.343 strlen

Strlen()-find the length of a null-terminated string
Usage:length=Strlen(string)

D0 A0
(CCR)

Returns the number of characters in a null-terminated string. Register A0 is
preserved,and the CCR is set for the returned length.

1.344 strcmpn

StrcmpN()-compare the values of strings
Usage:test=StrcmpN(string1,string2,length)

D0 A0 A1 D0
(CCR)

The string1 and string2 arguments are compared for the specified number of
characters. The comparison proceeds character-by-character until a
difference is found or the maximum number of characters have been examined.
The returned value is -1 if the first string was less,1 if the first string
was greater,and 0 if the strings match exactly. The CCR register is set for
the returned value.

1.345 toupper

ToUpper()-translate an ASCII character to uppercase
Usage:upper=ToUpper(character)

D0 D0

Converts an ASCII character to uppercase. Only register D0 is affected.

1.346 unlockrexxbase

UnlockRexxBase()-unlock a shared resource.
Usage:UnlockRexxBase(resource)

D0

Arexx 136 / 152

Releases the specified resource,or all resources if the argument is zero.
Every call to LockRexxBase()should be followed eventually by a call to
UnlockRexxBase ()for the same resource.

See Also:LockRexxBaseF()

1.347 writef

WriteF()-write characters to a file buffer
Usage:count=WriteF(IoBuff,buffer,length)

D0 A0 A1 D0
(CCR)

Writes a buffer of characters of the specified length to the file associated
with the IoBuff pointer. The buffer argument is a pointer to a storage area,
and the length argument specifies the number of characters to be written.
The returned value is the actual number of characters written or -1 if an
error occurred.

See Also:
CloseF()
,
OpenF()
,
ReadF()

1.348 allocmem()

Usage:ALLOCMEM(length,[attribute])
Allocates a block of memory of the specified length from the system free-
memory pool and returns its address as a 4-byte string. The optional
attribute parameter must be a standard EXEC memory allocation flag,supplied
as a 4-byte string. The default attribute is for "PUBLIC" memory(not
cleared).

This function should be used whenever memory is allocated for use by external
programs. It is the user’s responsibility to release the memory space when
it is no longer needed.

See Also:
FREEMEM()
Example:

say c2x(allocmem(1000)) ==>00050000

1.349 closeport()

Usage:CLOSEPORT(name)
Closes the message port specified by the name argument,which must have been
allocated by a call to OPENPORT()within the current ARexx program. Any
messages received but not yet REPLYed are automatically returned with the

Arexx 137 / 152

return code set to 10.

See Also:
OPENPORT()
Example:

call closeport myport

1.350 freemem()

Usage:FREEMEM(address,length)
Releases a block of memory of the given length to the system freelist. The
address parameter is a four-byte string,typically obtained by a prior call to
ALLOCMEM(). FREEMEM()cannot be used to release memory allocated using
GETSPACE(),the ARexx internal memory allocator. The returned value is a
boolean success flag.

See Also:
ALLOCMEM()
Example:

say freemem(’00042000’x,32) ==>1

1.351 getarg()

Usage:GETARG(packet,[n])
Extracts a command,function name,or argument string from a message packet.
The packet argument must be a 4-byte address obtained from a prior call to
GETPKT(). The optional n argument specifies the slot containing the string
to be extracted,and must be less than or equal to the actual argument count
for the packet. Commands and functions names are always in slot 0;function
packets may have argument strings in slots 1-15.

Examples:
command = getarg(packet)
function= getarg(packet,0) /* name string */
arg1 = getarg(packet,1) /* 1st argumeent*/

1.352 getpkt()

Usage:GETPKT(name)
Checks the message port specified by the name argument to see whether any
messages are available. The named message port must have been opened by a
prior call to OPENPORT() within the current ARexx program. The returned
value is the 4-byte address of the first message packet,or ’0000 0000’x if no
packets were available.

The function returns immediately whether or not a packet is enqueued at the
message port. Programs should never be designed to "busy-loop" on a message
port. If there is no useful work to be done until the next message packet
arrives,the program should call WAITPKT()and allow other tasks to proceed.

See Also:

Arexx 138 / 152

WAITPKT()
Example:

packet = getpkt(’MyPort’)

1.353 openport()

Usage:OPENPORT(name)
Creates a public message port with the given name. The returned value is the
4-byte address of the Port Resource strcture or ’0000 000’xif the port could
not be opened or initialized. An initialization failure will occur if
another port of the same name already exists,or if a signal bit couldn’t be
allocated.

The message port is allocated as a Port Resource node and is linked into the
program’s global data structure. Ports are automatically closed when the
program exits,and any pending messages are returned to the sender.

See Also:
CLOSEPORT()
Example:

myport = openport("MyPort")

1.354 reply()

Usage:REPLY(packet,rc)
Returns a message packet to the sender,with the primary result field set to
the value given by the rc argument. The secondary result is cleared. The
packet argument must be supplied as a 4-byte address,and the rc argument must
be a whole number.
Example:

call reply packet,10 /* error return*/

1.355 showdir()

Usage:SHOWDIR(directory,[’All’ | ’File’ | ’Dir’])
Returns the contents of the specified directory as a string of names
separated by blanks. The second parameter is an option keyword that selects
whether all entries,only files,or only subdirectories will be included.
Example:

say showdir("df1:c") ==>rx ts te hi tco tcc

1.356 showlist()

Usage:SHOWLIST[{’D’ | ’L’ | ’P’ | ’R’ | ’W’ },[name])
The first argument is an option keyword to select a system list;the options
currently supported are Devices,Libraries,Ports,Ready,and Waiting. If only
the first parameter is supplied,the function scans the selected list and

Arexx 139 / 152

returns the node names in a string separated by blanks. If the name
parameter is supplied,the boolean return indicates whether the specified list
contains a node of that name. The name matching is case-sensitive.

The list is scanned with task switching forbidden so as to provide an
accurate snapshot of the list at that time.

Example:
say showlist(’P’) ==>REXX MyCon
say showlist(’P’,’REXX’) ==>1

1.357 statef()

Usage:STATEF(filename)
Returns a string containing information about an external file. The string
is formatted as "{DIR | FILE} length blocks protection comment." The length
token gives the file length in bytes,and the block token specifies the file
length in blocks.

Example:
say statef("libs:rexxsupport.library")
/* would give "FILE 1880 4 RWED " */

1.358 waitpkt()

Usage:WAITPKT(name)
Waits for a message to be received at the specified(named)port,which must
have been opened by a call to OPENPORT() within the current ARexx program.
The returned boolean value indicates whether a message packet is available at
the port. Normally the returned value will be 1(True),since the function
waits until an event occurs at the message port.

The packet must then be removed by a call to GETPKT(),and should be returned
eventually using the REPLY()function. Any message packets received but not
returned when an ARexx program exits are automatically REPLYed with the
return code set to 10.

Example:
call waitpkt ’MyPort’ /* wait awhile */

1.359 directories

The files are listed below as they would be using the system dir command.
For example,"dir df1:c opt a" would list the contents of the :c directory on
disk drive 1.

Arexx 140 / 152

1.360 thec directory

This directory contains the command utilities used with ARexx. These files
should be copied to your system C: directory when you install the program.

c(dir)
hi loadlib
rexxmast rx
rxc rxset
tcc tco
te ts

1.361 theinclude directory

This directory has the INCLUDE and HEADER files used for assembly language
and "C" programming,respectively. These files contain the structure
definitions necessary to build an interface to ARexx.

include(dir)
errors.h rexxio.h
rxslib.h storage.h
errors.i rexxio.i
rxslib.i storage.i

1.362 thelibs directory

These are the library files for the language interpreter and the Support
Library functions. Both files should be copied to your system LIBS:directory
when you install ARexx.

libs(dir)
rexxsupport.library rexxsyslib.library

1.363 therexx directory

The :rexx directory contains example programs to illustrate various features
of the language. New files will be added from time to time,and users are
welcome to contribute files to be distributed in this way.

rexx(dir)
bigif.rexx break.rexx
builtin.rexx calc.rexx
cmdtest.rexx fact.rexx
factw.rexx haltme.rexx
hosttest.rexx iftest.rexx
marquis.rexx nesttest.rexx
paver.rexx potpourii.rexx
rslib.rexx select.rexx
sigtest.rexx support.rexx
test1.rexx timer.rexx

Arexx 141 / 152

1.364 thetools directory

These files are intended for software developers,and include examples of
interfacing to ARexx. The file rexxtest is of particular interest;it calls
the ARexx interpreter directly,and can be run under a debugger to aid with
developing new function libraries.

tools(dir)
hosttest hosttest.asm
loadlib.asm rexxtest
rexxtest.asm rxoffsets.o

1.365 miscellaneous files

.info Install-ARexx
README Start-Aexx

1.366 listings of header files

This section of the chapter consists of listings of the header files
contained in the :include directory.

1.367 storage.h

This is the main header file and contains definitions for all of the
important data structures used by ARexx.

/*===rexx/storage.h===

*
* Copyright (c) 1986,1987 by William S. Hawes (All Rights Reserved)

*
*==

* Header file to define ARexx data structures.

*/

#ifndef REXX_STORAGE_H
#define REXX_STORAGE_H

#ifndef EXEC_TYPES_H
#include "exec/types.h"
#endif
#ifndef EXEC_NODES_H
#include "exec/nodes.h"
#endif
#ifndef EXEC_LISTS_H
#include "exec/lists.h"
#endif
#ifndef EXEC_PORTS_H
#include "exec/ports.h"

Arexx 142 / 152

#endif
#ifndef EXEC_LIBRARIES_H
#include "exec/libraries.h"
#endif

/* The NexxStr structue is used to maintain the internal strings in REXX.

* It includes the buffer area for the string and associated attributes.

* This is actually a variable-length structure;it is allocated for a

* specific length string,and the length is never modified thereafter

* (since it’s used for recycling).

*/

struct NexxStr{
LONG ns_Ivalue; /* integer value */
UWORD ns_Length; /* length in bytes(excl null) */
UBYTE ns_Flags; /* attribute flags */
UBYTE ns_Hash; /* hash code */
BYTE ns_Buff[8]; /* buffer area for strings */
}; /* size: 16 bytes (minimum) */

#define NXADDLEN 9 /* offset plus null byte */
#define IVALUE(nsPtr) (nsPtr->ns_Ivalue)

/* String attribute flag bit definitions */
#define NSB_KEEP 0 /* permanent string? */
#define NSB_STRING 1 /* string form valid? */
#define NSB_NOTNUM 2 /* non-numeric? */
#define NSB_NUMBER 3 /* a valid number? */
#define NSB_BINARY 4 /* integer value saved? */
#define NSB_FLOAT 5 /* floating point format? */
#define NSB_EXT 6 /* an external string? */
#define NSB_SOURCE 7 /* part of the program source? */

/* The flag form of the string attributes */
#define NSF_KEEP (1<< NSB_KEEP) */
#define NSF_STRING (1<< NSB_STRING)
#define NSF_NOTNUM (1<< NSB_NOTNUM)
#define NSF_NUMBER (1<< NSB_NUMBER)
#define NSF_BINARY (1<< NSB_BINARY)
#define NSF_FLOAT (1<< NSB_FLOAT)
#define NSF_EXT (1<< NSB_EXT)
#define NSF_SOURCE (1<< NSB_SOURCE)

* Combinations of flags
#define NSF_INTNUM (NSF_NUMBER | NSF_BINARY | NSF_STRING)
#define NSF_DPNUM (NSF_NUMBER | NSF_FLOAT)
#define NSF_ALPHA (NSF_NOTNUM | NSF_STRING)
#define NSF_OWNED (NSF_SOURCE | NSF_EXT | NSF_KEEP
#define KEEPSTR (NSF_STRING | NSF_SOURCE | NSF_NOTNUM)
#define KEEPNUM (NSF_STRING | NSF_SOURCE | NSF_NUMBER | NSF_BINARY)

/* The RexxArg structure is identical to the NexxStr structure,but

* is allocated from system memory rather than from internal storage.

* This structure is used for passing arguments to external programs.

* It is usually passed as an "argstring",a pointer to the string buffer.

*/

Arexx 143 / 152

struct RexxArg {
LONG ra_Size; /* total allocated length */
UWORD ra_Length; /* length of string */
UBYTE ra_Flags; /* attribute flags */
UBYTE ra_Hash; /* hash code */
BYTE ra_Buff[8]; /* buffer area */
}; /* size: 16 bytes (minimum) */

/* The RexxMsg structure is used for all communications with Rexx programs.

* It is an EXEC message with a parameter block appended.

*/
struct RexxMsg{

struct Message rm_Node; /* EXEC message structure */
APTR rm_TaskBlock; /* pointer to global structure */
APTR rm_LibBase; /* library base */
LONG rm_Action; /* command (action) code */
LONG rm_Result1; /* primary result (return code) */
LONG rm_Result2; /* secondary result */
STRPTR rm_Args[16]; /* argument block(ARGO-ARG15) */
struct MsgPort *rm_PassPort; /* forwarding port */
STRPTR rm_CommAddr; /* host address (port name) */
STRPTR rm_FileExt; /* file extension */
LONG rm_Stdin; /* input stream(filehandle) */
LONG rm_Stdout; /* output steam(filehandle) */
LONG rm_avail; /* future expension */
}; /* size: 128 bytes */

/* Field definitions
#define ARGO(rmp) (rmp->rm_Args[0] /* start of argblock */
#define ARG1(rmp) (rmp->rm_Args[1] /* first argument */
#define ARG2(rmp) (rmp->rm_Args[2] /* second argument */

#define MAXRMARG 15 /* maximum arguments */

/* Command (action) codes for message packets */
#define RXCOMM $01000000 /* a command-level invocation */
#define RXFUNC $02000000 /* a function call */
#define RXCLOSE $03000000 /* close the port */
#define RXQUERY $04000000 /* query for information */
#define RXADDFH $07000000 /* add a function host */
#define RXADDLIB $08000000 /* add a function library */
#define RXREMLIB $09000000 /* remove a function library */
#define RXADDCON $0A000000 /* add/update a ClipList string */
#define RXREMCON $0B000000 /* remove a ClipList string */
#define RXTCOPN $0C000000 /* open the trace console */
#define RXTCCLS $0D000000 /* close the trace console */

/* Command modifier flag bits */
#define RXFB_NOIO 16 /* suppress I/O inheritance? */
#define RXFB_RESULT 17 /* result string expected? */
#define RXFB_STRING 18 /* program is a "string file"? */
#define RXFB_TOKEN 19 /* tokenize the command line? */
#define RXFB_NONRET 20 /* a "no-return" message? */

/* Modifier flags */
#define RXFF_RESULT (1<< RSFB_RESULT)
#define RXFF_STRING (1<< RXFB_STRING)
#define RXFF_TOKEN (1<< RXFB_TOKEN)

Arexx 144 / 152

#define RXFF_NONRET (1<< RXFB_NONRET)
#define RXCODEMASK $FF000000
#define RXARGMASK $0000000F

/* The RexxRsrc structure is used to manage global resources.

* The name string for each node is created as a RexxArg structure,

* and the total size of the node is saved in the "rr_Size" field.

* Functions are provided to allocate and release resource nodes.

* If special deletion operations are required,an offset and base can

* be provided in "rr_Func" and "rr_Base",respectively. This function

* will be called with the base in register A6 and the node in A0.

*/
struct RexxRsrc {

struct Node rr_Node;
WORD rr_Func; /* a "auto-delete" offset */
APTR rr_Base; /* "auto-delete" base */
LONG rr_Size; /* total size of node */
LONG rr_Arg1; /* available ... */
LONG rr_Arg2; /* available ... */
}; /* size: 32 bytes */

/* Resource node types */
#define RRT_ANY 0 /* any node type ... */
#define RRT_LIB 1 /* a function library */
#define RRT_PORT 2 /* a public port */
#define RRT_FILE 3 /* a file IoBuff */
#define RRT_HOST 4 /* a function host */
#define RRT_CLIP 5 /* a Clip List node */

/* The RexxTask structure holds the fields used by REXX to communicate with

* external processes,including the client task. It includes the global

* data structure(and the base environment). The structure is passed to

* the newly-created task in its "wake-up" message.

*/

#define GLOBALSZ 200 /* total size of GlobalData */
struct RexxTask {
BYTE rt_Global[GLOBALSZ]; /* global data structure */
struct MsgPort rt_MsgPort; /* global message port */
UBYTE rt_Flags; /* task flag bits */
BYTE rt_SigBit; /* signal bit */

APTR rt_ClientID; /* the client’s task ID
APTR rt_MsgPkt; /* the packet being processed
APTR rt_TaskID; /* our task ID
APTR rt_RexxPort; /* the REXX public port

APTR rt_ErrTrap; /* Error trap address
APTR rt_StackPtr; /* stack pointer for traps

struct List rt_Header1; /* Environment list */
struct List rt_Header2; /* Memory freelist */
struct List rt_Header3; /* Memory allocation list */
struct List rt_Header4; /* Files list */
struct List rt_Header5; /* Message Ports List */
};

/* Definitions for RexxTask flag bits

Arexx 145 / 152

#define RTFB_TRACE 0 /* external trace flag */
#define RTFB_HALT 1 /* external halt flag */
#define RTFB_SUSP 2 /* suspend task? */
#define RTFB_TCUSE 3 /* trace console in use? */
#define RTFB_WAIT 6 /* waiting for reply? */
#define RTFB_CLOSE 7 /* task completed? */

/* Definitions for memory allocation constants */
#define MEMQUANT 16 /* quantum of memory space */
#define MEMMASK $FFFFFFF0 /* mask for rounding the size */
#define MEMQUICK (1 << 0) /* EXEC flags: MEMF_PUBLIC */
#define MEMCLEAR (1 << 16) /* EXEC flags: MEMF_CLEAR */

/* The SrcNode is a temporary structure used to hold values destined for a

* segment array. It is also used to maintain the memory freelist.

*/

struct SrcNode {
struct SrcNode *sn_Succ; /* next node */
struct SrcNode *sn_Pred;
APTR sn_Ptr; /* pointer value */
LONG sn_Size; /* size of object */
}; /* size: 16 bytes */
#endif

1.368 rxslib.h

This file defines the library base for the ARexx Systems Library.

/* === rexx/rxslib.h==

*
* Copyright (c) 1986,1987 by William S. Hawes (All Rights Reserved)

*
*===

* The header file for the REXX Systems Library

*/

#ifndef REXX_RXSLIB_H
#define REXX_RXSLIB_H

#ifndef REXX_STORAGE_H
#include "rexx/storage.h"
#endif

/* Some macro definitions */

#define RXSNAME "rexxsyslib.library"
#define RXSID "rexxsyslib 1.0 (23 AUG 87)"
#define RXSDIR "REXX"
#define RXSTNAME "ARexx"

/* The REXX systems library structure. This should be considered */
/* semi-private and read-only,except for documented exceptions */

struct RxsLib {

Arexx 146 / 152

struct Library rl_Node; /* EXEC library node */
UBYTE rl_Flags; /* global flags */
UBYTE rl_pad;
APTR rl_SysBase; /* EXEC library base */
APTR rl_DOSBase; /* DOS library base */
APTR rl_IeeeDPBase; /* IEEE DP match library base */
LONG rl_SegList; /* library seglist */
LONG rl_MaxAlloc; /* maximum expression allocation*/
LONG rl_Chunk; /* allocation quantum */
LONG rl_MaxNest; /* maximum expression nesting */
struct NexxStr *rl_NULL; /* static string: NULL */
struct NexxStr *rl_FALSE; /* static string: FALSE */
struct NexxStr *rl_TRUE; /* static string: TRUE */
struct NexxStr *rl_REXX; /* static string: REXX */
struct NexxStr *rl_COMMAND; /* static string: COMMAND
struct NexxStr *rl_STDIN; /* static string: STDIN
struct NexxStr *rl_STDOUT; /* static string: STDOUT
struct NexxStr *rl_STDERR; /* static string: STDERR

STRPTR rl_Version; /* version/configuration string */
STRPTR rl_TaskName; /* name string for tasks */
LONG rl_TaskPri; /* starting prioity */
LONG rl_TaskSeg; /* startup seglist */
LONG rl_StackSize; /* stack size */
STRPTR rl_RexxDir; /* REXX directory */
STRPTR rl_CTABLE; /* character attribute table */
struct NexxStr *rl_Notice; /* copyright notice */

struct MsgPort rl_RexxPort; /* REXX public port */
UWORD rl_ReadLock; /* lock count */
LONG rl_TraceFH; /* global trace console */
struct List rl_TaskList; /* REXX task list */
WORD rl_NumTask; /* task count */
struct List rl_TaskList; /* Library List header */
WORD rl_NumLib; /* library count */
struct List rl_ClipList; /* ClipList header */
WORD rl_NumClip; /* clip node count */
struct List rl_MsgList; /* pending messages */
WORD rl_NumMsg; /* pending count */
};

/* Global flag bit definitions for RexxMaster */
#define RLFB_TRACE RTFB_TRACE /* interactive tracing? */
#define RLFB_HALT RTFB_HALT /* halt execution? */
#define RLFB_SUSP RTFB_SUSP /* suspend execution? */
#define RLFB_TCUSE RTFB_TCUSE /* trace console in use? */
#define RLFB_TCOPN 4 /* trace console open? */
#define RLFB_STOP 6 /* deny further invocations */
#define RLFB_CLOSE 7 /* close the master */

#define RLFMASK 0x07 /* passed flags */

; Initialization constants

#define RXSVERS 2 /* main version */
#define RXSREV 1 /* revision */
#define RXSALLOC 0x800000 /* maximum allocation */

Arexx 147 / 152

#define RXSCHUNK 1024 /* allocation quantum */
#define RXSNEST 32 /* expression nesting limit */
#define RXSTPRI 0 /* task priority */
#define RXSSTACK 4096 /* stack size */
#define RXSLISTH 4 /* number of list headers */

/* Character attribute flag bits used in REXX. Defined only for */
/* ASCII characters (range 0-127) */

#define CTB_SPACE 0 /* white space characters */
#define CTB_DIGIT 1 /* decimal digits 0-9 */
#define CTB_ALPHA 2 /* alphabetic characters */
#define CTB_REXXSYM 3 /* REXX symbol characters */
#define CTB_REXXOPR 4 /* REXX operator characters */
#define CTB_REXXSPC 5 /* REXX special symbols */
#define CTB_UPPER 6 /* UPPERCASE alphabetic */
#define CTB_LOWER 7 /* lowercase alphabetic */

/* Attribute flags */
#define CTF_SPACE (1 << CTB_SPACE)
#define CTF_DIGIT (1 << CTB_DIGIT)
#define CTF_ALPHA (1 << CTB_ALPHA)
#define CTF_REXXASYM (1 << CTB_REXXSYM)
#define CTF_REXXOPR (1 << CTB_REXXOPR)
#define CTF_REXXSPC (1 << CTB_REXXSPC)
#define CTF_UPPER (1 << CTB_UPPER)
#define CTF_LOWER (1 << CTB_LOWER)

#endif

This file defines the data structures used for buffered I/O. ARexx uses
linked lists of IoBuff structures to keep track of the files it opens. Each
IoBuff node is allocated as an "auto-delete" structure and can be closed and
released by a call to either CloseF() or RemRsrcNode(). An entire list of
files can be closed with a call to RemRsrcList().

1.369 rexxio.h

/* ===rexx/rexxio.h==

*
* Copyright (c) 1986,1987 by William S. Hawes (All Rights Reserved)

*
*===

* Header file for ARexx Input/Output related structures

*/

#ifndef REXX_REXXIO_H
#define REXX_REXXIO_H

#ifndef REXX_STORAGE_H
#include "rexx/storage.h"
#endif

#define RXBUFFSZ 204 /* buffeg length */

Arexx 148 / 152

/* The IoBuff is a resource node used to maintain the File List. Nodes are

* allocated and linked into the list whenever a file is opened.

*/

struct IoBuff{
struct RexxRsrc iobNode; /* structure for files/strings */
APTR iobRpt; /* read/write pointer */
LONG iobRct; /* character count */
LONG iobDFH; /* DOS filehandle */
APTR iobLock; /* DOS lock */
LONG iobBct; /* buffer length */
BYTE iobArea[RXBUFFSZ]; /* buffer area */
}; /* size: 256 bytes */

/* Access mode definitions */
#define RXIO_EXIST -1 /* an external filehandle */
#define RXIO_STRF 0 /* a "string file" */
#define RXIO_READ 1 /* read-only access */
#define RXIO_WRITE 2 /* write mode */
#define RXIO_APPEND 3 /* append mode (existing file) */

/* Offset anchors for SeekF() */
#define RXIO_BEGIN -1 /* relative to start */
#define RXIO_CURR 0 /* relative to current position */
#define RXIO_END 1 /* relative to end */

/* The Library List contains just plain resource nodes */

#define LLOFFSET(rrp) (rrp>rr_Arg1) /* "Query" offset */
#define LLVERS(rrp) (rrp->Arg2) /* library version */

/* The RexxClipNode structure is used to maintain the Clip List. The

* The ReplyList holds packets that have been received but haven’t been

* replied.

*/

struct RexxMsgPort{
struct RexxRsrc rmp_Node; /* linkage node */
struct MsgPort rmp_Port; /* the message port */
struct List rmp_ReplyList; /* messages awaiting reply */
};

/* DOS Device types */
#define DT_DEV 0 /* a device */
#define DT_DIR 1 /* an ASSIGNed directory */
#define DT_VOL 2 /* a volume */

/* Private DOS packet types */
#define ACTION_STACK 2002 /* stack a line */
#define ACTION_QUEUE 2003 /* queue a line */
#endif

1.370 errors.h

Arexx 149 / 152

This file contains the definitions for all of the error messages issued by
the ARexx interpreter.

/* == errors.h==

*
* Copyright (c) 1987 by Williams S. Hawes (All Rights Reserved)

*
* ===

* Definitions for ARexx error codes

*/

#define EERC_MSG 0 /* error code offset */
#define ERR10_001 (ERRC_MSG+1) /* program not found */
#define ERR10_002 (ERRC_MSG+2) /* execution halted */
#define ERR10_003 (ERRC_MSG+3) /* no memory available */
#define ERR10_004 (ERRC_MSG+4) /* invalid character in program */
#define ERR10_005 (ERRC_MSG+5) /* unmatched quote */
#define ERR10_006 (ERRC_MSG+6) /* unterminated comment */
#define ERR10_007 (ERRC_MSG+7) /* clause too long */
#define ERR10_008 (ERRC_MSG+8) /* unrecognized token */
#define ERR10_009 (ERRC_MSG+9) /* symbol or string too long */
#define ERR10_010 (ERRC_MSG+10) /* invalid message packet */
#define ERR10_011 (ERRC_MSG+11) /* command string error */
#define ERR10_012 (ERRC_MSG+12) /* error return from function */
#define ERR10_013 (ERRC_MSG+13) /* host environment not found */
#define ERR10_014 (ERRC_MSG+14) /* required library not found */
#define ERR10_015 (ERRC_MSG+15) /* function not found */
#define ERR10_016 (ERRC_MSG+16) /* no return value */
#define ERR10_017 (ERRC_MSG+17) /* wrong number of arguments */
#define ERR10_018 (ERRC_MSG+18) /* invalid argument to function */
#define ERR10_019 (ERRC_MSG+19) /* invalid PROCEDURE */
#define ERR10_020 (ERRC_MSG+20) /* unexpected THEN/ELSE */
#define ERR10_021 (ERRC_MSG+21) /* unexpected WHEN/OTHERWISE */
#define ERR10_022 (ERRC_MSG+22) /* unexpected LEAVE or ITERATE */
#define ERR10_023 (ERRC_MSG+23) /* invalid statement in SELECT */
#define ERR10_024 (ERRC_MSG+24) /* missing THEN clauses */
#define ERR10_025 (ERRC_MSG+25) /* missing OTHERWISE */
#define ERR10_026 (ERRC_MSG+26) /* missing or unexpected END */
#define ERR10_027 (ERRC_MSG+27) /* symbol mismatch on END */
#define ERR10_028 (ERRC_MSG+28) /* invalid DO syntax */
#define ERR10_029 (ERRC_MSG+29) /* incomplete DO/IF/SELECT */
#define ERR10_030 (ERRC_MSG+30) /* label not found */
#define ERR10_031 (ERRC_MSG+31) /* symbol expected */
#define ERR10_032 (ERRC_MSG+32) /* string or symbol expected */
#define ERR10_033 (ERRC_MSG+33) /* invalid sub-keyword */
#define ERR10_034 (ERRC_MSG+34) /* required keyword missing */
#define ERR10_035 (ERRC_MSG+35) /* extraneous characters */
#define ERR10_036 (ERRC_MSG+36) /* sub-keyword conflict */
#define ERR10_037 (ERRC_MSG+37) /* invalid template */
#define ERR10_038 (ERRC_MSG+38) /* invalid TRACE request */
#define ERR10_039 (ERRC_MSG+39) /* uninitialized variable */
#define ERR10_040 (ERRC_MSG+40) /* invalid variable name */
#define ERR10_041 (ERRC_MSG+41) /* invalid expression */
#define ERR10_042 (ERRC_MSG+42) /* unbalanced parentheses */
#define ERR10_043 (ERRC_MSG+43) /* nesting level exceeded */
#define ERR10_044 (ERRC_MSG+44) /* invalid expression result */
#define ERR10_045 (ERRC_MSG+45) /* expression required */

Arexx 150 / 152

#define ERR10_046 (ERRC_MSG+46) /* boolean value not 0 or 1 */
#define ERR10_047 (ERRC_MSG+47) /* arithmetic conversion error */
#define ERR10_048 (ERRC_MSG+48) /* invalid operand */

/* Return Codes for general use ... */
#define RC_FAIL -1 /* something’s wrong */
#define RC_OK 0 /* success */
#define RC_WARN 5 /* warning only */
#define RC_ERROR 10 /* something’s wrong */
#define RC_FATAL 20 /* complete or severe failure */

1.371 glossary

GLOSSARY
AmigaGuide Rexx Documentation By Kenny G 28.3.93

ALLOCATION. A grant of a system resource,such as memory space. Programs
designed to run in a multitasking environment generally use dynamic
allocation to avoid tying up system resources.

AMIGADOS. The higher-level part of the Amiga operating system that supports
the filing system and input/output operations.

ARGSTRING. An "argument string" structure used to pass data to an ARexx
program. The structure is passed as a pointer to the buffer area containing
the string data,and can be treated as a pointer to a null-terminated string.

ARGUMENT. A data item passed to a function,sometimes called a parameter.

CLAUSE. A group of one or more tokens forming a "sentence" in a language.
The clause is the smallest executable language fragment.

COMMAND LINE INTERFACE (CLI). A program that accepts input from the user and
runs programs based on the entered command. The CLI generally refers to the
command interpreter supplied with the Amiga,but other command "shells" may be
used instead.

CONCATENATION. An operation in which two strings are joined or "chained
together." ARexx provides two concatenation operators,one of which joins
strings directly and the other of which embeds a blank between the operands.

EXEC. The multitasking kernel of the Amiga’s operating system. EXEC
provides the task scheduling,interrupt handlin,and message-passing primitives
used to support ARexx.

FUNCTION HOST. A program that manages a public message port for receiving
function invocation messages. The message port may be the same one used for
command messages.

FUNCTION LIBRARY. A collection of functions callable from ARexx and managed
as an Amiga shared library. Each function library includes an entry point to
associate a function name with the code to be called.

HOST ADDRESS. The name of the public message port associated with a host
application. The host address is used as the unique identifier for the

Arexx 151 / 152

host,and should be unique within the system message ports list. Within an
ARexx program the host address identifies the external host to which commands
will be sent.

HOST APPLICATION. An executable program that program that provides a
suitable command interface to receive ARexx commands. Most host applications
will also provide a means to invoke macro programs from within the
application.

INTERRUPT. An event that alters the normal flow of control in a program.
Interrupts in ARexx refer to events within the program execution and are
distinct from the hardware-level interrupts managed by the Amiga EXEC system.

MACRO PROGRAM. A program that implements a complex "macro" operation from a
series of "micro" commands.

MESSAGE PACKET. A data structure used to pass information between tasks. A
message packet is allocated and initialized by one task and then sent to
another task’s message port. After the recipient has processed the
message,it "replies" the message to the replyport associated with the
message.

MESSAGE PORT. A data structure used as the rendezvous point for message
passing. A message port provides the anchor for a list of message packets
and identifies the task to be signalled when a message arrives.

MULTITASKING. The ability to run more than one program at a time. More
precisely, multitasking permits the resources of the computer to be shared
among many tasks without forcing any task to be aware of the others.

PROCESS. An extension to an EXEC task structure that provides the data
fields required to use AmigaDOS functions. All ARexx programs run as
AmigaDOS processes.

REPLYPORT. A message port designated to receive a returning message packet.
Each message packet includes a field that specifies its reply port.

RESIDENT PROCESS. The program responsible for launching ARexx programs and
for managing various resources used by ARexx. It is structured as a host
application and opens a public message port named "REXX."

SHARED LIBRARY. A collection of executable code and data managed as a
resource by the EXEC operating system. As the name "shared" implies, the
code and data in a library can be used by more than one task.

STORAGE ENVIRONMENT. The collection of data values forming the current state
of an ARexx program. Storage environments are strictly nested and only one
environment is current at any time.

TASK. An entity consisting of executable code and a data structure managed
by the EXEC operating system. The task is the smallest program unit that can
be scheduled and run separately.

TOKEN. The elementary words or atoms of a language. A token can be
considered as a string of one or more characters forming the smallest unit of
the language.

Arexx 152 / 152

TYPELESS. Data items having no assumed structure or usage. ARexx treats all
data as typeless character strings and checks for specific characteristics
only when required by an operation.

	Arexx
	Arexx Documents
	introduction
	chapter1
	chapter2
	chapter3
	chapter4
	chapter5
	chapter6
	chapter7
	chapter8
	chapter9
	chapter10
	appendixa
	appendixb
	appendixc
	appendixd
	appendixe
	organization of this document
	using this manual
	typographic conventions
	future directions
	language features
	arexx on the amiga
	further information
	installing arexx
	arexx and workbench
	installation
	starting the resident process
	naming conventions
	the rexx directory
	program examples
	format
	tokens
	comment tokens
	symbol tokens
	string tokens
	operators
	special character tokens
	clauses
	null clauses
	label clauses
	assignment clauses
	instruction clauses
	command clauses
	clause classification
	expressions
	symbol resolution
	order of evaluation
	numbers and numeric precision
	boolean values
	numeric precision
	unnamed.1
	arithmetic operators
	concatenation operators
	comparison operators
	logical (boolean) operators
	stems and compound symbols
	the execution environment
	the external environment
	the internal environment
	input and output
	resource tracking
	address
	arg
	break
	call
	do
	drop
	echo
	else
	end
	exit
	if
	interpret
	iterate
	leave
	nop
	numeric
	options
	otherwise
	parse
	procedure
	pull
	push
	queue
	return
	say
	select
	shell
	signal
	then
	trace
	upper
	when
	unnamed.2
	the host address
	the command interface
	using commands in macro programs
	using arexx with command shells
	command inhibition
	concept
	syntax and search order
	search order
	internal functions
	built-in functions
	external function libraries
	function hosts
	the built-in function library
	abbrev()
	abs()
	addlib()
	address()
	arg()
	b2c()
	bitand()
	bitchg()
	bitclr()
	bitcomp()
	bitor()
	bitset()
	bittst()
	bitxor()
	c2b()
	c2d()
	c2x()
	center() or centre()
	close()
	compress()
	compare()
	copies()
	d2c()
	d2x()
	datatype()
	delstr()
	delword()
	eof()
	errortext()
	exists()
	export()
	freespace()
	getclip()
	getspace()
	hash()
	import()
	index()
	insert()
	lastpos()
	left()
	length()
	max()
	min()
	open()
	overlay()
	pos()
	pragma()
	random()
	randu()
	readch()
	readln()
	remlib()
	reverse()
	right()
	seek()
	setclip()
	show()
	sign()
	space()
	storage()
	strip()
	substr()
	subword()
	symbol()
	time()
	trace()
	translate()
	trim()
	upper()
	value()
	verify()
	word()
	wordindex()
	wordlength()
	words()
	writech()
	writeln()
	x2c()
	xrange()
	tracing options
	display formatting
	tracing output
	command inhibition2
	interactive tracing
	error processing
	the external tracing flag
	interrupts
	template structure
	template objects
	the scanning process
	templates in action
	parsing by tokenization
	pattern parsing
	positional markers
	multiple templates
	ch9 concept
	command utilities
	hi
	rx
	rxset
	rxc
	tcc
	tco
	te
	ts
	resource management
	the global tracing console
	the library list
	the clip list
	basic structures
	designing a command interface
	receiving command messages
	result fields
	multiple host processes
	invoking arexx programs
	message packets
	command invocations
	function invocations
	 search order
	extension fields
	interpreting the result fields
	communicating with the resident process
	command(action)codes
	modifier flags
	unnamed.3
	unnamed.4
	design considerations
	calling convention
	parameter conversion
	returned values
	direct manipulation of data structures
	error1
	error2
	error3
	error4
	error5
	error6
	error7
	error8
	error9
	error10
	error11
	error12
	error13
	error14
	error15
	error16
	error17
	error18
	error19
	error20
	error21
	error22
	error23
	error24
	error25
	error26
	error27
	error28
	error29
	error30
	error31
	error32
	error33
	error34
	error35
	error36
	error37
	error38
	error39
	error40
	error41
	error42
	error43
	error44
	error45
	error46
	error47
	error48
	limits
	compatibility
	functional groups
	library functions
	addclipnode
	addrsrcnode
	clearmem
	clearrexxmsg
	closef
	closepublicport
	cmpstring
	createargstring
	createdospkt
	createrexxmsg
	cva2i
	cvc2x
	cvi2arg
	cvi2az
	cvs2i
	cvx2c
	currentenv
	deleteargstring
	deletedospkt
	deleterexxmsg
	dosread
	doswrite
	errormsg
	existf
	fillrexxmsg
	finddevice
	findrsrcnode
	freeport
	freespace
	getspace
	initlist
	initport
	isrexxmsg
	issymbol
	listnames
	lockrexxbase
	openf
	openpublicport
	queuef
	readf
	readstr
	remclipnode
	remrsrclist
	remrsrcnode
	seekf
	stackf
	stctoken
	strcpya
	strcpyn
	strcpyu
	strflipn
	strlen
	strcmpn
	toupper
	unlockrexxbase
	writef
	allocmem()
	closeport()
	freemem()
	getarg()
	getpkt()
	openport()
	reply()
	showdir()
	showlist()
	statef()
	waitpkt()
	directories
	thec directory
	theinclude directory
	thelibs directory
	therexx directory
	thetools directory
	miscellaneous files
	listings of header files
	storage.h
	rxslib.h
	rexxio.h
	errors.h
	glossary

